The Relationship Between Aerators and Microcystin: A Comparison Between Two Ponds

By: Hugh Key University of Missouri, Columbia 65201, Missouri, United States of America

Introduction

- Cyanobacterial blooms are a natural occurrence in surface waters that are becoming a global problem exacerbated by anthropogenic nutrient loading to water bodies
- Cyanobacteria produce cyanotoxins such as microcystin, which can be extremely harmful to aquatic life within the lake as well as to the surrounding organisms.
- Aerators are a unique way to control the growth of phytoplankton or alleviate eutrophication. Lots of conflicting results with this.

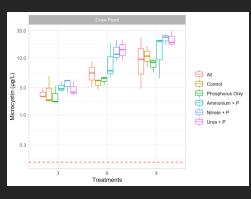
METHODS

- Nutrient addition experiments were conducted in Missouri at Crow Pond, a non-aerated pond, and Stephen's Lake, an aerated pond.
- Nutrient enrichments of NO₃, P, NH₄⁺, Urea and an enrichment with all the treatments were added to the lake water
- Lake water was collected into 1 L cubitainers and was incubated under ambient light and temperature for nine days to allow for the growth of phytoplankton.

RESULTS

Parameter	Crow Pond	Stephens Lake Urban		
Landscape	Under developed			
GPS	38°89'37.5" N; -91°73'76.9" W	38°95.0'97.7"N; -92°30.7'54.6"W.		
Z _{max} (m)	3.409	5.345		
Z _{min} (m)	3.404	Isothermal		
pН	7.09	5.62		
SRP (mg/L)	NA	0.019		
TP (mg/L)	0.113	0.103		
Urea (mg/L)	0.2442	0.1372		
NO3 (mg/L)	0.025	0.005		
TN (mg/L)	1.79	1.42		
NH4 ⁺ (mg/L)	0.025	0.007		

Aeration **alleviates** microcystin concentration by limiting **cyanobacterial HABs**.


ਹੁ ²⁰⁰

Ĥ.

Samples

/Brl

Samples

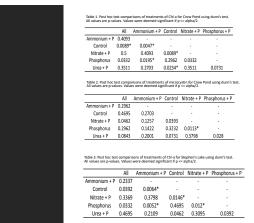


Table 4. Post hoc test comparisons of treatments of microcystin for Stephen's Lake using dunn's test. Al values are p-values. Values were deemed significant if p <= alpha/2.

	All	Ammonium + P	Control	Nitrate + P	Phosphorus + P
Ammonium + P	0.3361				
Control	0.0273	0.0095*			
Nitrate + P	0.4088	0.4238	0.0156*		
Phosphorus	0.072	0.0298	0.3222	0.0453	
Urea + P	0.1882	0.3222	0.0025*	0.2566	0.0095*

Conclusions

E Control

Urea + P

Nitrate + P

Ammonium + P

Phosphorus Only

Chl-a and microcystin concentrations were significantly different throughout the experiment. There was a response to the nutrient enrichments, particularly observant in Stephen's Lake.

Data supports aeration being a useful tool for controlling cyanobacteria HABs primarily by shifting the phytoplankton communities.

Acknowledgements

I wish to thank the University of Missouri Limnology Lab for providing all of the resources needed to conduct the experiment. I would like to thank Dr. Rebecca North, Emily Kinzinger, and Hannah Jaeger for helping with data collection, laboratory methods, and all analyses. I would like to extend my thanks to Dr. Rebecca North and Emily Kinzinger for supervising the project. I would also like to thank Abby Chicoine, Catherine Goltz, Hannah Jaeger, and Heather Jovanovic from the Linked Undergraduate Research in Nutrients (LUGNuts) program for contributing to the introduction. I would like to extend my thaks to the faculty of the LUGNuts project: Colin Whitfield, Helen Baulch, Jason Venkiteswaran, and Nora Casson.