Samaikya Valluripally^a, Vaibhav Akashe^a, David Falana^b, Michael Fisher^c, Prof. Khaza Anuarul Hope^a, Prof. Prasad Calyam^a University of Missouri-Columbia^a, Rutgers University^b, Columbia College^C

- capabilities.
- of user's learning experience by inducing cybersickness.
- developed model behavior.

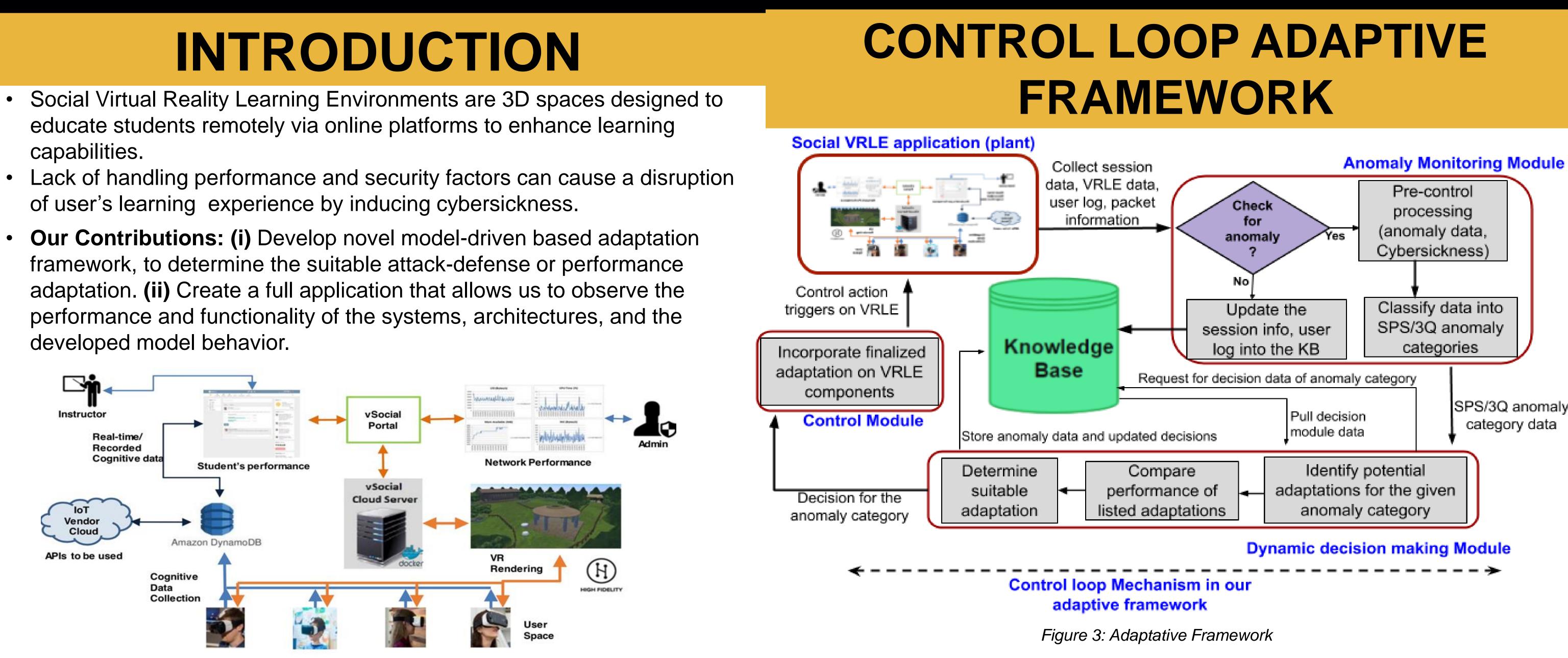


Figure 1: Overview of vSocial, a Social VRLE for training youth with Autism Spectrum Disorder

CPUUtilization

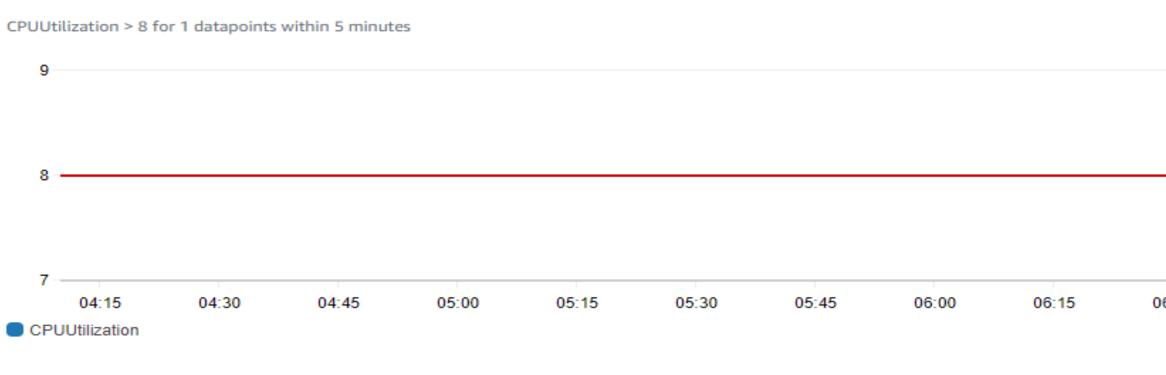
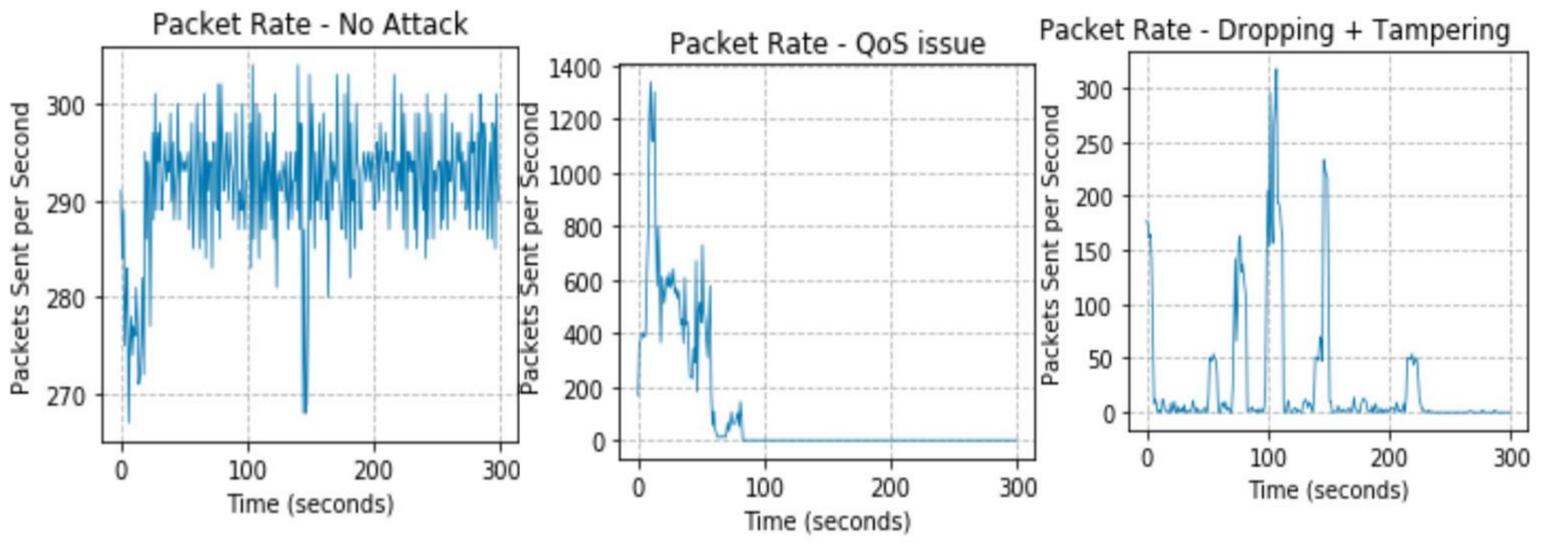
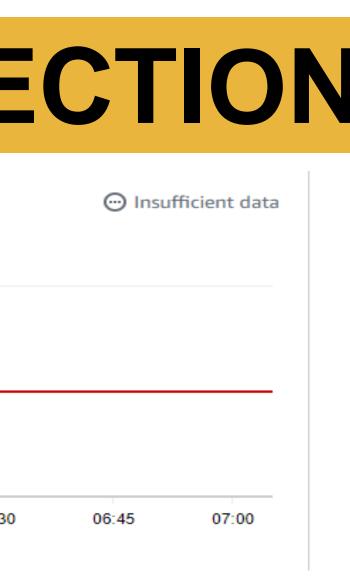


Figure 2: AWS alarm created for Quality of Application anomaly with threshold condition CPU utilization >8%



We collected the relevant SPS/3Q anomaly data, once the alarms created in AWS triggers for the vSocial application.

UNIVERSITY OF MISSOURI UNDERGRADUATE RESEARCH IN CONSUMER NETWORKING TECHNOLOGIES Attack-Defense and Performance Adaptations for Social Virtual Reality Learning Environments



Using our proposed control loop adaptive framework, we implement the real-time adaptations to mitigate cybersickness in social VRLEs. **Step-1:** VRLE data (user data, session info is collected to determine any anomalies using our anomaly monitoring tool

Step-2: If any anomaly is detected, our framework proceeds to categorize the anomaly into a performance or security issues. **Step-3:** Using this categorized data, the framework invokes the decision module to determine the suitable adaptation for the detected SPS/3Q anomaly event. **Step-4:** The dynamic decision-making algorithm updates the determined adaptation and their respective anomaly into the knowledge base. **Step-5:** Now, the resultant adaptation is incorporated on the VRLE components and further checked if the anomaly still exists.

Anomalies Detected							
Туре	Time	Source	Destination	Protocol	Length	Info	
SPS	557.369417	128.206.20.46	128.206.20.43	UDP	92	58222 > 62054 Len=50	
SPS	421.962237	128.206.20.43	128.206.20.46	UDP	89	40102 > 58222 Len=47	
SPS	553.712 9 25	128.206.20.46	128.206.20.43	UDP	90	58222 > 62054 Len=48	
SPS	113.666930	128.206.20.46	128.206.20.43	UDP	78	58222 > 62054 Len=36	
SPS	421.248308	128.206.20.43	128.206.20.46	UDP	83	62058 > 58222 Len=41	
QoA	82.558665	3.20.240.238	192.168.10.68	UDP	128	48001 > 52766 Len=86	
SPS	223.134959	128.206.20.46	128.206.20.43	UDP	90	58222 > 62054 Len=48	
SPS	556.242194	128.206.20.46	128.206.20.43	UDP	92	58222 > 62054 Len=50	

Figure 4: Anomaly Monitoring tool showing the Detected Anomalies related to SPS/3Q events

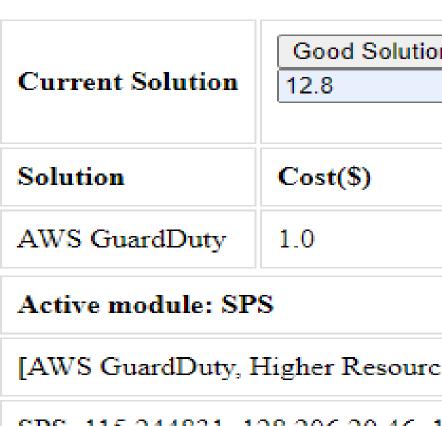


Figure 6: Decision Module determine AWS Guard Duty as the suitable solution to implement for an CDC inquin

		323	ISSUE		
Anomaly Category:	Specific Anomaly Issue:	Adaptation Name:	AWS Service Used:	Threshold Metrics:	Response Time:
		Upgrading Instance Type (A1)	AWS Lambda	(Before) CPU Utilization 9%	553.066 ms
		Opgrading instance Type (AT)	Awo Lamoua	(After) CPU Utilization 4%	555.000 ms
QoA	High CPU Utilization	Higher Resources (A2)	AWS Autoscaling	(Before) CPU Utilization 9%	300 .
		ringinor Resources (R2)	Aws Autoscalling	(After) CPU Utilization 4%	300 s
		Enabling Enhanced Networking (A3)	AWS Lambda	(Before) Average Network Packets Out >= 7280	900.067 ms
		Enabling Enhanced Networking (AS)	Awo Lamoua	(After) Average Network Packets Out = 7280	900.007 IIIS
QoS	Low Network Bandwidth	Higher Network Bandwidth (A4)	AWS Autoscaling	(Before) Average Network Packets Out >= 7280	300 s
		right Network Dahuwiuth (A4)	Awo Autoscanng	(After) Average Network Packets Out <7280	500.8
SPS	Unauthorized Access	Malicious Monitoring Tool (A5)	AWS GuardDuty	Best Practices Suggested By AWS Services	513 ms

Figure 5: Performance of the determined adaptations for the detected anomalies using our framework in terms of response time and threshold Metrics

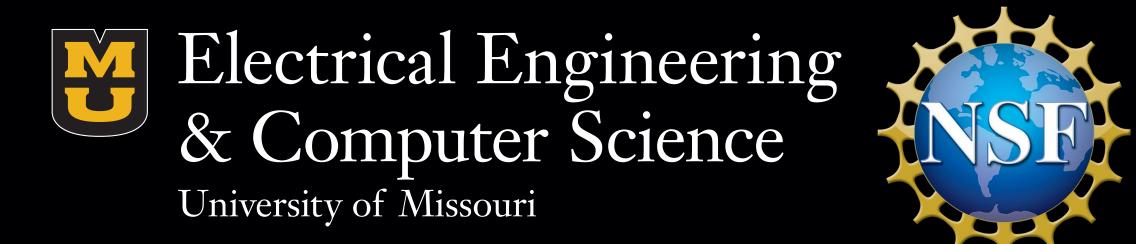
Key Findings:

- simulation experiments in vSocial.
- time, resource usage and cost metric. time.

- VRLE application.

In the future, we plan to expand our framework to make active decision making for zero-day anomaly events.

Our work was funded by National Science Foundation Awards: CNS-1647213 and CNS-1659134. Any opinions, findings, and conclusions or recommendations expressed in this publications are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.



on Ba	d Solution		
		Runtime (ms)	Resource Cost(mb)
		513.0	128

[AWS GuardDuty, Higher Resources, Higher Network Bandwidth, Enhanced Networking, Upgrading Instance Type] SPS, 115.244831, 128.206.20.46, 128.206.20.43, UDP, 92, 58222 > 62054 Len=50

• We determine the cybersickness occurrence can be quantified using certain QoS (packet loss), QoA (visualization delay) metrics from our

• We perform trade-off analysis of our framework for the decision making of the adaptation in terms of different threshold metrics, system response

• With these results, we also show a before after scenario, where we determine that addressing most vulnerable anomaly (Low bandwidth) can aid in mitigating the cybersickness occurrence with the given response

• From our QoA adaptation, the CPU Utilization went from 9% to 4% after the adaption occurred, and for the QoS adaptation we observe the Average Packets Per Second is stabilized to meet the threshold value.

CONCLUSION

• Proposed a novel control loop adaptive framework to address the performance and security issues that induces cybersickness in a social

• We perform real-time adaptations on the identified issues and mitigate them to reduce the cybersickness level of the users.

ACKNOWLEDGEMENTS