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Deepfakes

Synthetic videos that contain altered faces and/or voices of a subject
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Problem Overview




Methods of “Deepfaking”
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Figure 2. Samples of different methods displaying difference be-
tween color of the left and right eye. (Top to bottom: [15], [21],
image taken from [39])
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Figure 2. Overview of our LRCN method. (a) is the original sequence. (b) is the sequence afier face alignment. We crop out eye region
of each frame based on eye landmarks p1~6 in (b) and pass it to (c) LRCN, which consists of three parts: feature extraction, sequence

learning and state prediction.

Figure 1: MDS-based fake video detection: Features extracted from 1-second audio-visual segments are input to the MDS net-
work. The MDS network comprises the audio and visual sub-networks, whose description is provided in Table 1. Descriptors
learned by the video and audio sub-networks are tuned via the cross-entropy loss, while the contrastive loss is employed to
enforce higher dissimilarity between audio-visual chunks arising from fake videos. MDS is computed as the aggregate audio-

visual dissonance over the video length, and employed as a figure of merit for labeling a video as real/fake.

Figure 3. Example from FaceForensics [ ] showing shading arti-
facts arising from illumination estimation and imprecise geometry

of the nose.

Figure 6. Missing geometry in Deepfakes. Teeth are generated as
a structureless white blob. Samples from the dataset in Sec. 4.1.
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Fig. 1: 1D power spectrum statistics from each sub-data set
from Faces-HQ. The higher the frequency, the bigger is the
difference between real or fake data.
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Figure 1. Six example visemes and their corresponding phonemes.
The phonemes in the top-right (M, B, P), for example, corre-
spond to the sound you make when you say “mother”, “brother”,
or “parent”. To make this sound, you must tightly press your lips
together, leading to the shown viseme.




Can we build a multimodal network to
optimize the detection of all types of
deepfakes?
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Results
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Face detection: FANet

* Alternatives:
» BlazeFace (200-1000 fps)
» S3FD: Single Shot Scale-invariant Face Detector (36 fps)
* FANet: Face Alignment Network (5 fps)
e Super-FAN: Enhanced FANet
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Landmark Extraction
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Audio features: Deep Speech

e Alternatives:
* SyncNet

* Ravanelli, M., & Bengio, Y. (2018, December). Speaker recognition from raw waveform
with sincnet. In 2018 IEEE Spoken Language Technology Workshop (SLT) (pp. 1021-
1028). IEEE.

* Deep Speech

* Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., ... & Ng, A. Y.
(2014). Deep speech: Scaling up end-to-end speech recognition. arXiv preprint
arXiv:1412.5567.
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Color Visual features: Xception

* Inspired by InceptionV3
where Inception modules
have been replaced with
depth-wise separable
convolutions

e Alternatives:

* |nceptionV3
* MobileNetV2
e ResNext

Table 1. Classification performance comparison on ImageNet (sin-
gle crop, single model). VGG-16 and ResNet-152 numbers are
only included as a reminder. The version of Inception V3 being
benchmarked does not include the auxiliary tower.

Top-1 accuracy Top-5 accuracy

VGG-16 0.715 0.901
ResNet-152 0.770 0.933
Inception V3 0.782 0.941
Xception 0.790 0.945

Table 3. Size and training speed comparison.

Parameter count Steps/second

Inception V3 23,626,728 31
Xception 22,855,952 28
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Lip Reading: LipNet

Assael, Y. M., Shillingford, B., Whiteson, S., &
N. (2016). Lipnet: End-to-end sentence-level
lipreading. arXiv preprint arXiv:1611.01599.

e Alternatives:

De Freitas,
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Spectral Features:

Estimation of Azimuthal Average
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/
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Relevant Deepfake Detection
Methods



Deepfake Video Detection Using Recurrent Neural
Networks

David Gliera and Edward J. Delp a e | () L ﬁ
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Guera, D. and E. J. Delp. Deepfake Video Detection Using Recurrent Neural Networks. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Nov.
2018, pp. 1-6. 26



Exposing Deepfakes By Detecting Face Warping

Artifacts

Yuezun Li and Siwei Lyu
* Artifact Detection with CNN

o Affine Transformation

Figure 3. lllustration of face shape augmentation of negative ex-
amples. (a) is the aligned and blurred face, which then undergoes
an affine warped back to (b). (c, d) are post-processing for re-
fining the shape of face area. (c) denotes the whole warped face
is retained and (d) denotes only face area inside the polygon is
retained.

Y. Liand S. Lyu, “Exposing DeepFake Videos By Detecting Face Warping Artifacts,” CVPRW, pp. 46-52, 2018.
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Figure 6. Performance of each CNN model on all frames in LQ set

of DeepFakeTIMIT [ 15].
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Figure 7. Performance of each CNN model on all frames in HQ set
of DeepFakeTIMIT [ 15].
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In Ictu Oculi: Exposing Al Created Fake Videos by Detecting

Eye Blinking
Yuezun Li et al.

= LRCN (Long Term Recurrent CNN)

Feature
extraction
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learning

State
prediction

Figure 2. Overview of our LRCN method. (a) is the original sequence. (b) is the sequence after face alignment. We crop out eye region
of each frame based on eye landmarks p1~. in (b) and pass it to (c) LRCN, which consists of three parts: feature extraction, sequence
learning and state prediction.

Y. Li, M.-C. Chang, and S. Lyu, “In Ictu Oculi: Exposing Al Created Fake Videos by Detecting Eye Blinking,” in 2018 IEEE International Workshop
on Information Forensics and Security (WIFS), Dec. 2018, pp. 1-7, doi: 10.1109/WIFS.2018.8630787.
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Exploiting Visual Artifacts to Expose Deepfakes and
Face Manipulations
Falko Matern et al.

= Eye color
= Shadow

Figure 3. Example from FaceForensics [ ] showing shading arti-
facts arising from 1llumination estimation and imprecise geometry
of the nose.

Figure 6. Missing geometry in Deepfakes. Teeth are generated as

Figure 2. Samples of different methods displaying difference be- a structureless white blob. Samples from the dataset in Sec. 4.1.
tween color of the left and right eye. (Top to bottom: [15], [21],

image taken from [19])

F. Matern, C. Riess, and M. Stamminger, “Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations,” in 2019 IEEE Winter Applications of
Computer Vision Workshops (WACVW), Waikoloa Village, HI, USA, Jan. 2019, pp. 83-92, doi: 10.1109/WACVW.2019.00020.
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FaceForensics++: Learning to Detect Manipulated

Facial Images
Andreas Rossler et al.
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A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niessner, “FaceForensics++: Learning to Detect Manipulated Facial Images,” in 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), Oct. 2019, pp. 1-11, doi: 10.1109/1CCV.2019.00009.
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e Fast Fourier Transform

* Azimuthal Average

Unmasking DeepFakes with Simple Features
 Medium-High Resolution Success

Richard Durall et al.
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Fig. 1: 1D power spectrum statistics from each sub-data set
from Faces-HQ. The higher the frequency, the bigger is the
difference between real or fake data.
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Fig. 4: Example. of an azimuthal average. (Left) Power R. Durall, M. Keuper, F.J. Pfreundt, and J. Keuper,
Spectrum 2D. (Right) Power Spectrum 1D. Each frequency “Unmasking DeepFakes with simple Features,”

. . ) arXiv:1911.00686 [cs, stat], Mar. 2020, Accessed: Jun. 15,
component is the radial average from the 2D spectrum. 2020, [Online]. Available:
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Detecting Deep-Fake Videos from Phoneme-Viseme Mismatches

(2020)

Shruti Agarwal et al.

e Letters'm/’, 'b', and 'p’

* Phoneme

e Viseme

dataset
original
A2V

T2V-L |
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in-the-wild
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99.4%
96.6"
83.7Y
R9.5%
93.9%

r A
0
r A
0
4
0
4
0
r A
L

CNN
99.6%
96.9%
71.1%
80.7%
97.0%

Table 3. The accuracy ol the two automatic lechmgues (profile and
CNN) 1o detect 1l @ mouth 1s open or closed. The accuracics are
compuled at a ixed threshold corresponding o average [alse alarm
rale of 0.5% (i.c., misclassilying a closed mouth as open).

Figure 1. Six example visemes and their corresponding phonemes.
The phonemes in the top-right (M, B, P), for example, corre
spond to the sound you make when you say “mother”, “brother”,
or “parent”. To make this sound, you must tightly press your lips
together, leading to the shown viseme.

youtu.be/VWMEDacz3L4

Agarwal, S., Farid, H., Fried, O., and M. Agrawala. Detecting Deep-Fake
Videos from Phoneme-Viseme Mismatches. In Workshop on Media 32
Forensics at CVPR, Seattle, WA, 2020.
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Not made for each other- Audio-Visual Dissonance-based Deepfake
Detection and Localization

Komal Chugh et al.

= MDS (Modality Dissonance Score)

video segment-level
features

(Cross-Entropy Loss
(L2)

Cross-Entropy Loss
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audio segment-level
‘ features

audio segment-1||Jaudio segment-2 audio segment-n|

Figure 1: MDS-based fake video detection: Features extracted from 1-second audio-visual segments are input to the MDS net-
work. The MDS network comprises the audio and visual sub-networks, whose description is provided in Table 1. Descriptors
learned by the video and audio sub-networks are tuned via the cross-entropy loss, while the contrastive loss is employed to
enforce higher dissimilarity between audio-visual chunks arising from fake videos. MDS is computed as the aggregate audio-
visual dissonance over the video length, and employed as a figure of merit for labeling a video as real/fake.

K. Chugh, P. Gupta, A. Dhall, and R. Subramanian, “Not made for each other- Audio-Visual
Dissonance-based Deepfake Detection and Localization,” arXiv:2005.14405 [cs], May 2020, 33
Accessed: Jun. 19, 2020. [Online]. Available: http://arxiv.org/abs/2005.14405.
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You said
that

= Figure 1,2 and 6
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Sample Videos from DFDC
Dataset
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