Improving the Production of Oil in an Underutilized Crop: Crambe hispanica

A work in progress

Garret Hall

Intro to Crambe Hispanica

History

- Native to mediterranean area
- Official domestication in 1933

Characteristics

- Cover crop potential
 - Thrives in no-till soils
- High yield potential
- Natural Resistance (halophytic)
- High concentration of Erucic acid in seeds (55-60%)

Erucic acid

et al., 2013)

- A monounsaturated omega-9 fatty acid Known crop genus containing Erucic acid
 - Brassica
 - Crambe
- Used in
 - Biofuel
 - Detergent production
 - Ink production

Brassica napus (1) Brassica napus (2) Brassica oleracea var. albiflora 99/99/1 C-genome Brassica napus (3) Brassica napus var. napobrassi Brassica oleracea (6, 7) 70/88/0.96 Brassica napus (4-6) Brassica napus (7) Brassica napus (8) 98/98/ Brassica juncea 64/80/0.83 A-genome Brassica napus (9-14) 64/60/0.85 Sinapis arvensis (1) Brassica tournefortii Raphanus raphanistrum (B) 93/94/0.76 Raphanus sativus 100/99/1 6<mark>4/-/0.7</mark>3Raphanus raphanistrum (A) Erucastrum gallicum Sinapis arvensis (2) Erucastrum canariense 65/51/0.68 Brassica nigra B-genome 99/99/1 Brassica carinata (B) Sinapis alba 561-10 Grambe hispanica (A) Crambe hispanica (B) 00/99/1 99/99/1 Crambe hispanica (C) 100/99/1 Črambe hispanica subsp abyssi 81/64/11 96/90/1 Crambe glabrata 7<mark>\$/61,0.83</mark> Crambe kralikii Phylogeny of FAE1 trait (a crucial gene in erucic acid synthesis) (Xiaoqin Sun Crambe filiformis (A) 99/99/1 Crambe filiformis (B)

Crambe Hispanica's potential as a biofuel source

- Issues with biofuel and how Crambe may combat these challenges
 - Land impacts/deforestation
 - Crambe as a cover crop would reduce land area needed
 - Thrives in high salt soils meaning it can grow on a larger variety of land (Primarily Coastal regions)
 - Fuel crystallizing and clogging vehicle filters (Cold regions)
 - Erucic acid has a much lower "Cloud point" than standard oil seeds, meaning the fuel will not crystallize as easily in colder regions. (**Grewal et al., 1993**)
 - "Food vs Fuel" (Land for fuel replacing land for food)
 - Crambe may double as a food source, as its leaves/stem are rich with glucosinolates.

Improving Erucic Acid Synthesis in Crambe hispanica

Background

 Previous research in related species (Canola) revealing Erucic acid synthesis pathways has significantly contributed to producing high oil quality and content (Lühs et al., 1999; Bao, Pollard, and Ohlrogge, 1998). Similar methods may also work on Crambe hispanica.


```
https://www.healthline.com/nutrition/is-canola-oil-health
```

Aim

- Contribute data on genes responsible for Erucic acid synthesis to further facilitate Crambe hispanica as a productive biofuel crop.

For Whom?

- Plant breeders use this data when cross breeding and using Crispr-Cas9.

Genome Wide Association Study (GWAS)

Background

- Statistical method use in population genetics to identify correlations between single nucleotide bases (SNPs) and phenotype.
- Outliers signify statistical significance

Application in Crambe Research

 Using a diverse population of known accesions, we may compare erucic acid levels in seeds to SNPs originating from tissue samples

References

Cover crop - <u>http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-</u> 28472018000208517

Erucic oil content (>55%) -

https://www.frontiersin.org/articles/10.3389/fpls.2019.01442/full

Erucic oil oxidation stability - <u>https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/erucic-acid</u>

Crambe Phylogeny -

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0083535

References cont.

Lühs, W. W., A. Voss, J. Han, A. Gräfin zu Münster, D. Weier, F. P. Wolter, M. Frentzen, and W. Friedt. 1999.
"Genetic Modification of Erucic Acid Biosynthesis in Brassica Napus." In *Genetics and Breeding for Crop Quality and Resistance: Proceedings of the XV EUCARPIA Congress, Viterbo, Italy, September 20–25, 1998,* edited by G. T. Scarascia Mugnozza, E. Porceddu, and M. A. Pagnotta, 323–30. Dordrecht: Springer Netherlands.

- Bao, X., M. Pollard, and J. Ohlrogge. 1998. "The Biosynthesis of Erucic Acid in Developing Embryos of Brassica Rapa." *Plant Physiology* 118 (1): 183–90.
- Grewal, V.S., Ramamurthi, S. & McCurdy, A.R. Synthesis and properties of erucic acid triacylglycerols. *J Am Oil Chem Soc* 70, 955–959 (1993). https://doi.org/10.1007/BF02543020