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Objectives

Error and Repeatability

Stride Characteristics

• Consumer grade hardware and free software is a viable solution to the challenges of 
studying locomotor kinematics in mice.

• Inexpensive hardware coupled with deep learning yields both increases in video 
throughput and marker accuracy.

• We found significant locomotor differences after only one week of wheel acclimation
• Wheel activity is potentially a non-invasive approach to altering gait kinematics in mice.

• Evaluate GoPro cameras as a video recording device 
for small animal locomotion.

• Compare relative error between manual digitizing 
and deep learning.

• Determine repeatability of locomotor characteristics 
across trials.

• Determine the effects of one week of wheel exercise 
on stride characteristics.

1. Claghorn GC, et al. 2017. Physiol Biochem Zool 90:533–545.
2. Nath T, et al. 2019. Nat Protoc 14:2152–2176. 

http://www.mousemotorlab.org/deeplabcut
3. Hedrick TL. 2008. Bioinspiration and Biomimetics 3:034001. 

http://biomech.web.unc.edu/dltdv/
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Introduction
• Mouse locomotion is commonly studied in models of 

human musculoskeletal disease and exercise physiology.
• Traditional methods for tracking joint movements for the 

study of locomotor kinematics is labor intensive and 
requires expensive hardware.

• We sought to speed up the process with Deep Learning2

using free software and consumer grade hardware.

COMPARISON OF METHODS FOR 
ANALYZING MOUSE LOCOMOTION 

WITH FREE SOFTWARE 

Percent digitizing error was estimated for a
known length for 3 separate trials. We
compared deep learning (left) to manual
digitizing (right). Error was not statistically
different (P = 0.35) between methods. Deep
Learning had lower mean absolute error
(0.9% vs. 1.4%).
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Trait ICC Before ICC After
Mean Velocity (mm/s) 0.632 0.576
Stride Frequency (strides/s) 0.481 0.499
Stride Length (mm) 0.500 0.553
Duty Factor 0.592 0.548
Stance Width (mm) 0.433 0.281

Trait
Mean Difference
(After – Before)

95% 
Interval

Mean Velocity (mm/s) 63.67 37.48-90.8
Stride Frequency (strides/s) 0.43 0.11-0.73
Stride Length (mm) 10.15 7.89-13.25
Duty Factor -0.09 (-0.11)-(-0.06)
Stance Width (mm) 0.97 (-1.46)-2.79

• Nine mice were filmed prior to and after 
one week of voluntary wheel 
locomotion.

• We filmed 174 trials using two GoPro 
cameras operating at 120 FPS.

• Trials were digitized separately for each 
camera using both DeepLabCut (Deep 
Learning) and DLTdv8 (manual)3. 

• Cameras were 3D calibrated and 
coordinates tracked for 6 lower limb 
landmarks.
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Repeatability of stride characteristics between repeated trials of the
same mouse, measured by ICC, was similar before and after 1 week of
wheel access. Velocity was most repeatable before, and Duty Factor
after, although we did observe substantial variation between trials.

These plots show mean velocity per trial for
each of nine mice. Gray points are Before
wheel access, and gold points are After
wheel access. We statistically compared the
After – Before difference in each parameter.
All stride parameters differed significantly,
except for Stance Width. The table below
summarizes the statistical analysis and
results.
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