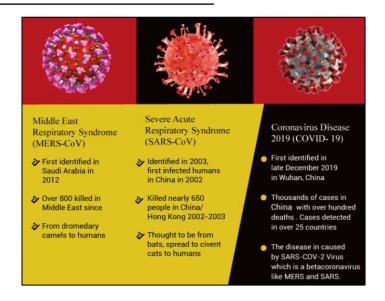
In Vitro Efficacy of Chloroquine (CQ) Against the Novel Coronavirus SARS-CoV-2

David Meyerhoff, Jeff Whyte, and Jeffrey Adamovicz (PI)

Overview

Coronaviruses are named for the crown-like spikes on their surface. There are seven coronaviruses that can infect humans.


Common human coronaviruses:

229E (alpha coronavirus) **OC43** (beta coronavirus)

NL63 (alpha coronavirus) HKU1 (beta coronavirus)

Coronaviruses that have crossed over from animals to humans are:

- MERS-CoV (Middle East Respiratory Syndrome MERS)
- **SARS-CoV** (Severe Acute Respiratory Syndrome SARS)
- SARS-CoV-2 (2019 Novel Coronavirus SARS-CoV-2, COVID-19)

Chloroquine as a potential treatment for COVID-16

- The COVID-19 pandemic caused by SARS-CoV-2 is having serious consequences on health and the economy worldwide.
- Chloroquine (CQ) is an established drug used in the treatment of malaria.
- The antiviral efficacy of CQ has been reported previously, including against coronaviruses.
- · CQ could be integrated into current treatment strategies while novel treatments are awaited.

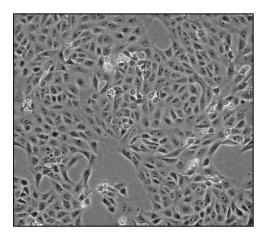
Oscanoa, et al. (2020). A pharmacological perspective of chloroquine in SARS-CoV-2 infection: An old drug for the fight against a new coronavirus? Int J Antimicrob Agents 56, 106078

In Vitro Efficacy of Chloroquine (CQ) Against the Novel Coronavirus SARS-CoV-2

David Meyerhoff, Jeff Whyte, and Jeffrey Adamovicz (PI)

Experimental Aims

Goal: Determine the effectiveness of Chloroquine in inhibiting SARS-CoV-2 infection in vitro.


Test system: Vero E6 cell line.

- The Vero cell line was initiated from the kidney of a normal adult African green monkey on March 27, 1962, by Y. Yasumura and Y. Kawakita (Ammerman, et al. 2008).
- Vero E6 is a **continuous cell line** (can be replicated through many cycles of division and not become senescent).
- Vero E6 cells are **interferon-deficient**; unlike normal mammalian cells, they do not • secrete interferon alpha or beta when infected by viruses
- This characteristic allows Vero E6 to be used as host cells for growing viruses.

Uses include:

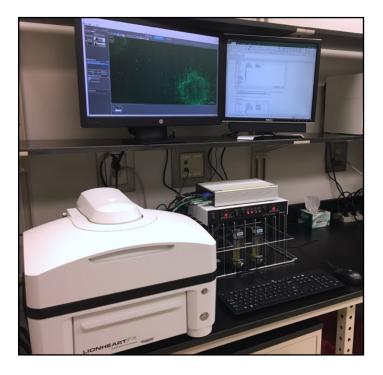
- · Measurement of virus replication in the presence or absence of a research pharmaceuticals.
- The growth of viral stocks for research purposes.

Ammerman, et al. (2008). Growth and maintenance of Vero cell lines. Curr Protoc Microbiol. Appendix 4E.

In Vitro Efficacy of Chloroquine (CQ) Against the Novel Coronavirus SARS-CoV-2 David Meyerhoff, Jeff Whyte, and Jeffrey Adamovicz (PI)

The Laboratory for Infectious Disease Research (LIDR) at the University of Missouri

- State-of-the-art facilities to support research on infectious diseases.
- **Goal**: Develop novel approaches to prevent and treat diseases caused by some of our most deadly pathogens, including **SARS-CoV-2 (COVID-19)**.
- 10,000 net sq. feet of biosafety level **BSL-2** and **BSL-3** laboratories.
- Assist health officials in the event of an infectious disease outbreak in the United States.
- Designed to protect researchers and the environment from any release of biohazards.
- Access is strictly controlled, limited to a small number of trained MU faculty, staff and students.
- One of 13 structures as part of the National and Regional Biocontainment Laboratory Network. Partial federal support from the National Institute of Allergy and Infectious Diseases (NIAID).



In Vitro Efficacy of Chloroquine (CQ) Against the Novel Coronavirus SARS-CoV-2

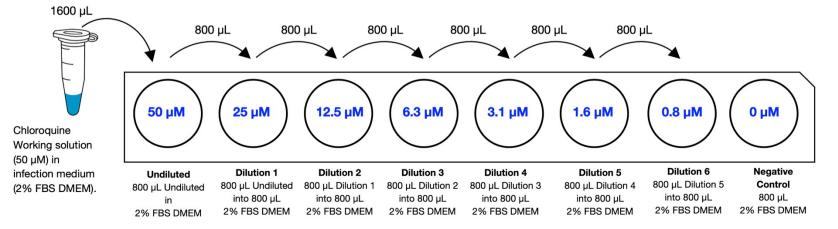
David Meyerhoff, Jeff Whyte, and Jeffrey Adamovicz (PI)

Lionheart FX Automated Microscope (BioTek)

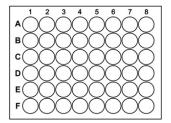
- 4x, 20x, 40x, and 60x magnification with auto-focus and auto-exposure
- Brightfield, phase contrast, and fluorescence imaging (10 colors, 4 simultaneously)
- Temperature (up to 40°C), CO₂/O₂ gas, and humidity control for kinetic assays (tested at LIDR to 96 hours)
- Vessel adapters (multiwell plates, microscope slides, flasks (25 and 75 cm²), and dishes (35 and 60 mm)
- Powerful Gen5 software for image capture and quantitative data analysis

Experiment #1: Vero E6 Exposure to Chloroquine (CQ) – Lionheart FX Kinetic Assay - Experimental Overview Vero E6 dosing with chloroquine (2-fold dilution series) in infection medium – 19 h exposure.

Objective:

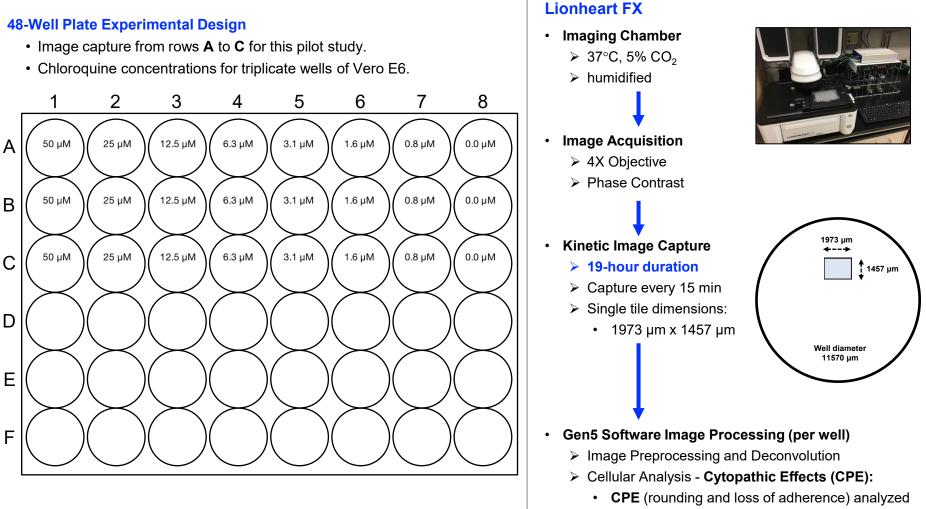

- Pilot study to establish the optimal CQ concentrations to minimize toxicity to Vero E6 cells.
- These established CQ concentrations will be used to test effectiveness against SARS-CoV-2 infection.

Brief Experimental Methods


- > 03-01-2021: Preparation of Vero E6 Cells (Immunology Lab BSL-2):
 - Seeded Vero E6 cells (ATCC #CRL-1586) in a 48-well plate at 65,000 cells/well.
 - 250 μL/well of complete growth medium (DMEM +10% FBS +1 mM GlutaMax +10 μg/mL gentamicin).
 - Cells incubated for 20 hours (37°C, 5% CO2, humidified environment) until 70-80% confluent.

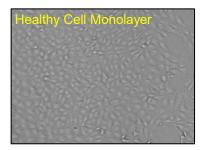
> 03-02-2021: Chloroquine addition to Vero E6 cells (Immunology Lab - BSL-2)):

- Preparation of 50 mM chloroguine stock solution in 1X PBS (syringe filtered 0.22 µm). Aliguots (500 µL) stored at -20°C.
- Working solution of chloroquine (50 μM) prepared in infection medium (DMEM +2% FBS +1 mM GlutaMax +10 μg/mL gentamicin).
- Two-fold dilution series of chloroguine in infection medium:

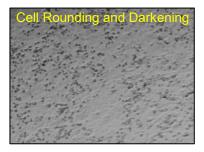


Growth medium removed from Vero E6 48-well plate and replaced with 250 µL/well chloroguine dilutions in triplicate.

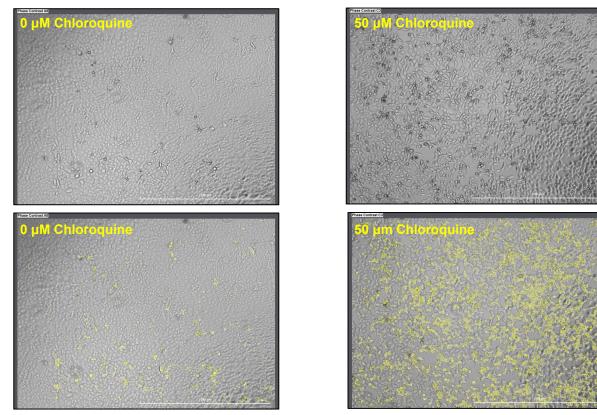
Experiment #1: Vero E6 Exposure to Chloroquine (CQ) – Lionheart FX Kinetic Assay - Experimental Overview Vero E6 dosing with chloroquine (2-fold dilution series) in infection medium – 19 h exposure.



per well at each frame over the 19-h kinetic assay duration.



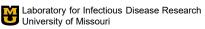
Experiment #1: Vero E6 Exposure to Chloroquine (CQ) – Lionheart FX Kinetic Assay - Experimental Overview Vero E6 dosing with chloroquine (2-fold dilution series) in infection medium – 19 h exposure.


Lionheart Gen5 Cellular Analysis for Cytopathic Effect (CPE) of Chloroquine.

Example Micrographs from Experiment #1 – 19-hour CQ exposure (Phase Contrast 4X).

Unmasked Images

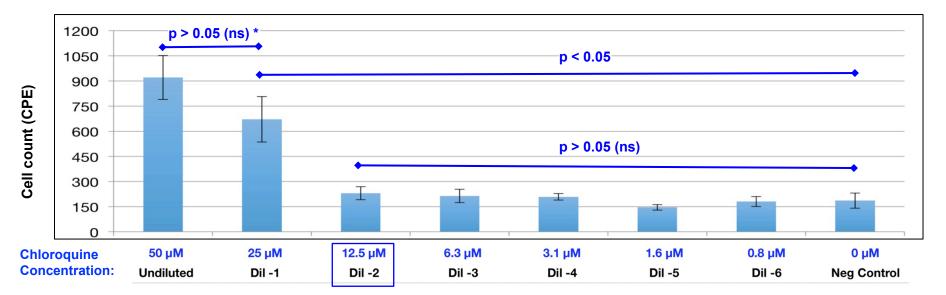
Masked Images CPE in yellow


Vero E6 dosing with chloroquine (2-fold dilution series) in infection medium – 19 h exposure.

Micrographs per well at end of 19-hour acquisition.

Chloroquine Concentration:	50 μM Undiluted	25 μΜ Dil -1	12.5 μM Dil -2	6.3 μM Dil -3	3.1 μM Dil -4	<mark>1.6 μΜ</mark> Dil -5	<mark>0.8 μΜ</mark> Dil -6	0 μM Neg Control
	1	2	3	4	5	6	7	8
A	· · · ·						1. 0	
в								
с								

Cell count graphs per well over 19-hour acquisition (one image capture every 15 min).


Chloroquine Concentration:	50 μM Undiluted	25 μM Dil -1	12.5 μM Dil -2	6.3 μM Dil -3	3.1 μM Dil -4	1.6 μM Dil -5	0.8 μM Dil -6	0 μM Neg Control
	1	2	3	4	5	6	7	8
A			man	and the second			and a state of the	
в	_						and a start of the	
с			and a second		~~~~~			·

Vero E6 dosing with chloroquine (2-fold dilution series) in infection medium – 19 h exposure.

Cell count per well at end of 19-hour acquisition.

Chloroquine Concentration:		50 μM Undiluted	25 μΜ Dil -1	12.5 μM Dil -2	<mark>6.3 μΜ</mark> Dil -3	3.1 μM Dil -4	1.6 μM Dil -5	0.8 μM Dil -6	0 μM Neg Control
ſ		1	2	3	4	5	6	7	8
	A	856	429	153	163	184	116	132	96
	в	734	688	268	187	247	173	234	231
	С	1173	897	270	292	195	149	175	231

Laboratory for Infectious Disease Research University of Missouri

* One-way ANOVA with post-hoc Tukey HSD Test

Vero E6 dosing with chloroquine (10-fold dilution series) in infection medium – 48 h exposure.

Objective:

- > Extend dilution range of CQ based on Vero E6 toxicity results form Experiment #1.
- > Increase duration to 48 hours based on published test conditions for other SARS-CoV-2 antiviral compounds¹.

Brief Experimental Methods

- > 03-07-2021: Preparation of Vero E6 Cells (Immunology Lab BSL-2):
 - Seeded Vero E6 cells (ATCC #CRL-1586) in a 48-well plate at 65,000 cells/well.
 - 250 μL/well of complete growth medium (DMEM +10% FBS +1 mM GlutaMax +10 μg/mL gentamicin).

100 µL

• Cells incubated for 20 hours (37°C, 5% CO2, humidified environment) until 70-80% confluent.

> 03-08-2021: Chloroquine addition to Vero E6 cells (Immunology Lab - BSL-2)):

100 µL

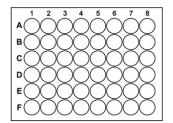
• Working solution of chloroquine (50 μM) prepared in infection medium (DMEM +2% FBS +1 mM GlutaMax +10 μg/mL gentamicin).

100 µL

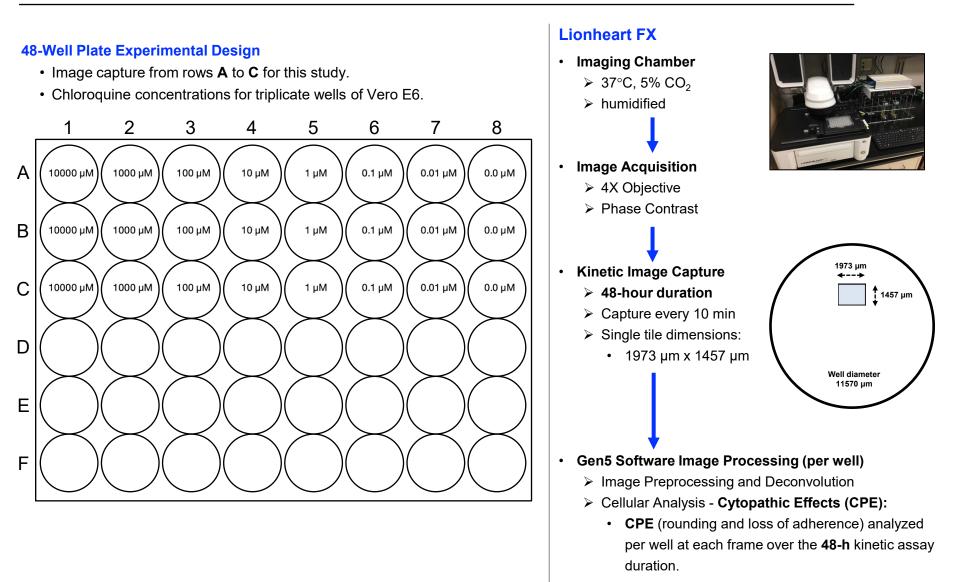
• **10-fold** dilution series of chloroquine in infection medium:

1500 µL

10000 100 100 10 0.01 1.0 0.1 0 μM μM μM uМ μΜ μM μΜ uМ Chloroquine Working solution (10000 µM) in Dilution 1 **Dilution 2 Dilution 3 Dilution 4 Dilution 5** Dilution 6 Negative infection medium Undiluted 100 µL Dilution 4 100 µL Dilution 5 Control 100 µL Undiluted 100 µL Dilution 1 100 µL Dilution 2 100 µL Dilution 3 1000 µL Undiluted (2% FBS DMEM). into 900 µL 1000 uL into 900 µL in 2% FBS DMEM 2% FBS DMEM


100 µL

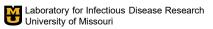
100 µL


100 µL

• Growth medium removed from Vero E6 48-well plate and replaced with 250 µL/well chloroquine dilutions in triplicate.

¹ Holwerda, M., V'kovski, P., Wider, M., Thiel, V., and Dijkman, R. (2020). *Identification of an Antiviral Compound from the Pandemic Response Box that Efficiently Inhibits SARS-CoV-2 Infection In Vitro*. Microorganisms 8.

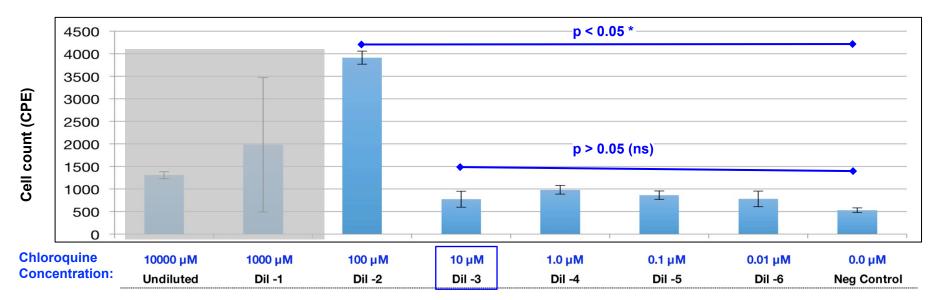
Vero E6 dosing with chloroquine (10-fold dilution series) in infection medium – 48 h exposure.


Vero E6 dosing with chloroquine (10-fold dilution series) in infection medium – 48 h exposure.

Micrographs per well at end of 48-hour acquisition.

Chloroquine Concentration:	10000 µM Undiluted	1000 μM Dil -1	100 μM Dil -2	10 μM Dil -3	1.0 μM Dil -4	0.1 μM Dil -5	0.01 μM Dil -6	0.0 μM Neg Control
	Onunated		D 11 - 2					
	1	2	3	4	5	6	7	8
А								and the second
в								
с		Ser.						

Cell count graphs per well over 48-hour acquisition (one image capture every 10 min).


Chloroquine Concentratio	10000 μM Undiluted	1000 μM Dil -1	100 μM Dil -2	10 μM Dil -3	1.0 μM Dil -4	0.1 μM Dil -5	0.01 μM Dil -6	0.0 μM Neg Control
	1	2	3	4	5	6	7	8
A	2	~	\int					
В	2		/					
с	1		\checkmark					

Vero E6 dosing with chloroquine (10-fold dilution series) in infection medium – 48 h exposure.

Cell count per well at end of 48-hour acquisition.

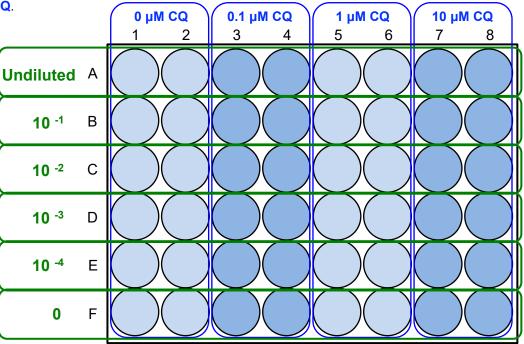
Chloroquine Concentration:		10000 μM Undiluted	1000 μM Dil -1	100 µM Dil -2	10 μM Dil -3	1.0 μM Dil -4	0.1 μM Dil -5	0.01 μM Dil -6	0.0 μM Neg Control
-		1	2	3	4	5	6	7	8
	A	1384		3811	549	907	797	435	522
-	в	1149	65	3730	651	1171	1048	947	448
-	с	1383	963	4199	1121	868	744	959	623

Laboratory for Infectious Disease Research University of Missouri

* One-way ANOVA with post-hoc Tukey HSD Test

Experiment #3: Vero E6 Exposure to Chloroquine (CQ) and SARS-CoV-2 - Experimental Overview

Objective:


- > Determine effectiveness of CQ at reducing CPE in Vero E6 cells infected with SARS-CoV-2.
- > Expose Vero E6 to CQ concentrations determined to have minimal toxicity to cells based on Experiments #1 and #2.
- > Toxicity of 10 μ M CQ concentration was not significantly different from negative control (0 μ M).
- > Infect cells with 10-fold dilution series of SARS-CoV-2 at each CQ concentration and measure CPE at 48 and 96 hours.

Brief Experimental Methods

- > 04-04-2021: Preparation of Vero E6 Cells (Immunology Lab BSL-2):
 - Seeded Vero E6 cells in a 48-well plate (65,000 cells/well; 250 µL/well of growth medium, incubated 20 hours until 70-80% confluent.
- > 04-05-2021: Chloroquine addition to Vero E6 cells (Immunology Lab BSL-2)):
 - Cells exposed to 10-fold dilution series of chloroquine in infection medium: 10 μM, 1 μM, 0.1 μM, and 0 μM in duplicate (125 μL/well).
- > 04-05-2021: SARS-CoV-2 infection of Vero E6 cells (Virology Lab BSL-3):
 - 10-fold dilution series SARS-CoV-2 virus in infection medium (125 µL/well) added to existing medium with CQ.
 - Images captured with EVOS microscope at 48- and 96-hours post-infection.
 - SARS-CoV-2 Isolate (BEI Resources) SARS-Related Coronavirus 2, Isolate USA-WA1/2020 Catalog No. NR-5228.

SARS-CoV-2 Dilutions (3.16E+05 TCID₅₀/mL)

Experiment #3: Vero E6 Exposure to Chloroquine (CQ) and SARS-CoV-2 - Experimental Overview

Vero E6 Image Capture and TCID₅₀ Analysis

- > Image Capture with Life Technologies EVOS XL Digital Imaging System Microscope.
 - 4X magnification digital images acquired for each well (TIF format).

TCID₅₀ Assay

A measure of infectivity (viral replication in cells) to obtain a titer for a given virus stock.

Titer: A given number of infectious viral units per unit volume.

Infectious Unit: The smallest amount of virus that produces cytopathic effects (CPE).

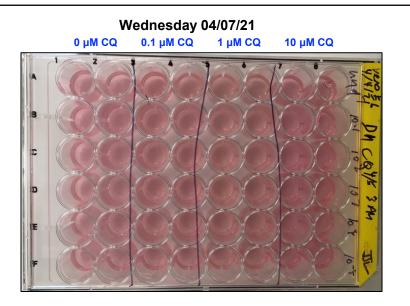
TCID₅₀: The median tissue culture infectious dose. Defined as the dilution of a virus required to infect 50% of a given cell culture.

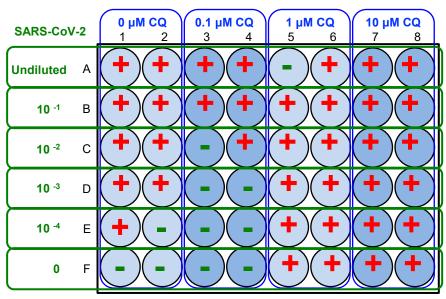
Scoring of CPE: Each individual well of a multiwell plate is designated **positive** or **negative** based on the presence or absence of CPE (dark cells, loss of adherence), respectively.

Infection rate =

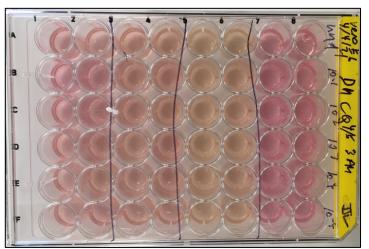
number of cumulative positive units

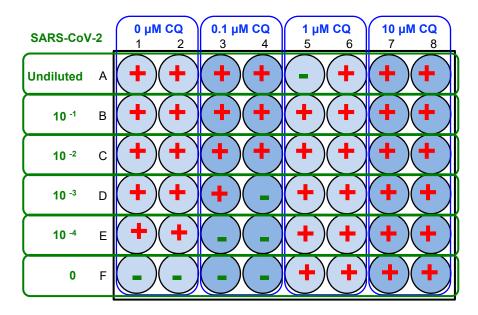
number of cumulative positive units + number of cumulative negative units


TCID₅₀ Methods adapted from the following publications:


Lei, C., Yang, J., Hu, J., and Sun, X. (2020). On the Calculation of TCID50 for Quantitation of Virus Infectivity. Virologica Sinica.

Reed, L.J. and Muench, H. (1938). A simple method of estimating fifty percent endpoints. Am J Hyg 27, 493497.




Experiment #3: Vero E6 Exposure to Chloroquine (CQ) and SARS-CoV-2 - Experimental Overview Plate images and scoring sheets (04/07/21) and (04/09/21).

Wednesday 04/09/21 0 μM CQ 0.1 μM CQ 1 μM CQ 10 μM CQ

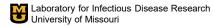
Laboratory for Infectious Disease Research University of Missouri

Experiment #3: Vero E6 Exposure to Chloroquine (CQ) and SARS-CoV-2 - Experimental Overview TCID₅₀ Values (04/07/21) and (04/09/21).

SARS-CoV-2 Infection Date	Imaging/ Scoring Date	Infection Duration (h)	Chloroquine Concentration (µM)	SARS-CoV-2 TCID ₅₀ /mL
05-Apr	07-Apr	48 hours	10.0 µM CQ	8.00E+05
05-Apr	07-Apr	48 hours	1.0 μM CQ	1.42E+06
05-Apr	07-Apr	48 hours	0.1 μM CQ	8.00E+02
05-Apr	07-Apr	48 hours	0.0 μM CQ	8.00E+04
05-Apr	09-Apr	96 hours	10.0 µM CQ	8.00E+05
05-Apr	09-Apr	96 hours	1.0 µM CQ	8.00E+05
05-Apr	09-Apr	96 hours	0.1 μM CQ	8.00E+03
05-Apr	09-Apr	96 hours	0.0 μM CQ	2.53E+05

TCID₅₀ Analysis

- The lowest TCID₅₀ based on CPE was determined to be in Vero E6 cells treated with 0.1 µM CQ.
- Compared to cells not treated with CQ (0 μM), the "protective" effect of 0.1 μM CQ against SARS-CoV-2 was a two-order-of-magnitude reduction in CPE.


In Vitro Efficacy of Chloroquine (CQ) Against the Novel Coronavirus SARS-CoV-2 David Meyerhoff, Jeff Whyte, and Jeffrey Adamovicz (PI)

Conclusions

- Chloroquine at less than 12.5 µM was not toxic to Vero E6 cells over 48 hours.
- Chloroquine at 0.1 µM provided a protective effect against SARS-CoV-2 cytopathic effects.

Future Directions

- Moving from the Vero E6 (monkey cell line) to a human cell line model could more accurately reflect chloroquine's ability to protect from SARS-CoV-2 in vitro.
- Ultimately, in vivo (animal model) studies are required to determine how chloroquine exerts its effects in a physiological system.
- More investigation into the mechanism of action of chloroquine is required to truly make an informed, definitive statement about its efficacy as a clinical treatment for COVID-19.

