

Faculty Mentor: Dr. Elizabeth Parks, Nutrition and Exercise Physiology

Funding Source: MARC/IMSD - NIH-funded Maximizing Access to Research Careers/ Initiative for Maximizing Student Diversity

Fatty acid oxidation in nonalcoholic steatohepatitis (NASH)

AM Perry, JM Mucinski, A Diaz-Arias, JA Ibdah, RS Rector, and EJ Parks

A major component in the pathogenesis of NASH is reduced hepatic mitochondrial activity, specifically decreased β -oxidation β -ox). The diagnosis of NASH requires a liver biopsy for histologic grading of liver tissue. In the present study, 18 subjects (6 men, 12 women, 47±8 years, 119±23kg (mean±SD)) underwent a diagnostic liver biopsy to confirm NASH; liver tissues were scored by a pathologist to determine liver disease status, denoted by the NAFLD activity score (NAS). This project's goal was to quantify hepatic β -ox using a noninvasive breath test to predict NASH severity. We utilized the stably-labeled fatty acid 1,2,3,4-13C-octanoate. In theory, when fed orally, subsequent breath 13CO₂ levels reflect hepatic β -ox, because octanoate is directly transferred to the liver via the portal vein and enters the mitochondria without a carrier protein. A single dose of ¹³C-octanoate (23.4mg) was fed in orange juice and eight breath samples were collected once before and intermittently for 135-minutes. Total CO, production rates were measured by respiratory gas analysis and breath ¹³CO₂ enrichment measured by isotope ratio-mass spectrometry. During the test, subjects oxidized an average of $24\pm4\%$ (range: 17-31%) of the octanoate dose. Baseline octanoate oxidation did not correlate with body weight, liver enzymes, NAS, or fibrosis. After nine months, 11 of the subjects underwent a second biopsy to reassess their liver disease and repeated the breath test. The change in steatosis (a NAS sub-score) was associated with changes in octanoate oxidation – both in units of absolute ¹³CO₂ produced (r=-0.523, P=0.012) and total oxidized relative to body weight (r=-0.707, P=0.001). These results suggest that a ¹³C-octanoate breath test alone is not a sufficient indicator of liver disease. However, the results support ¹³C-octanoate breath tests as a strong predictor of changes in steatosis in NASH and repeated breath tests as an indicator of change in liver disease status..