** McNair Scholars Program Preparing Undergraduates for Graduate Study

Abstract

Female cardiometabolic health (e.g., glucose tolerance, body composition) is protected compared to males when fed high-fat-diet (HFD). Activation of the beta-3 adrenergic receptor (β3AR) via the chemical ligand CL316,243 (CL) induces browning in white adipose tissue (WAT), a process sufficient to improve glucose tolerance and reduce visceral adiposity. *Our aim was to determine (a) if sex differences exist in CL-induced* WAT browning; and (b) if two WAT depots, perigonadal (PGAT) and subcutaneous (SQAT), differ in CL responsiveness, in a sex-specific manner. To this end, 8-week-old male and female mice, bred on a C57BL/6J background were fed HFD for a total of 16 weeks, and given daily CL injections (lug/g body weight) for the final 2 weeks. We compared those groups using 2x2 ANOVA to determine main and interaction effects (S=sex; T=treatment; SxT=interaction) for browning and adipocyte health markers in PGAT and SQAT (gene expression via qrtPCR; protein expression via Western blot). We report here that the effects of CL are both depot-dependent and sex-specific. As expected, females had greater uncoupling protein 1 (UCP1); however, this was only observed in PGAT (S, p<0.001), not SQAT. UCP1 was more responsive in female PGAT (SxT, p=0.011); however, sexes were equally responsive in SQAT. Interestingly, in male SQAT, PGC1a (i.e., mitochondrial biogenesis marker) responded significantly better to CL (SxT p=0.046); whereas in PGAT, females were more responsive (SxT, p=0.026). We also show for the first time that CL increases glucose-related protein 75 (GRP75), a known mitochondrial translocator protein, in both depots, in both sexes (T, p<0.05, both). Lastly, while female PGAT had greater adiponectin, males had higher adiponectin in SQAT (S, p<0.05, both). In conclusion, it appears SQAT is more responsive to CL in males, wherea PGAT is more responsive in females, which we hypothesize is partially explained by differences in local estrogen exposure.

Conclusions

CL improves HFD-induced glucose intolerance and body composition in both sexes! ***** WAT responds to CL differently in males and females, however, this is *depot-dependent*. * PGAT appears to be the major site of browning in females, however, SQAT is the major site of browning in males.

Beta-3 adrenergic receptor activation induces white adipose tissue browning in a sex and depot-dependent manner.

Eric D. Queathem, Rebecca Welly, Laura Clart, Candace Rowles, Hunter Timmons, Peggy A. Eichen, Kevin Fritsche, Dennis Lubahn, and Victoria Vieira-Potter

Department of Nutrition and Exercise Physiology, Department of Biochemistry; University of Missouri-Columbia

Background & Significance

Female mice are protected against high-fat-diet (HFD) induced metabolic dysfunction. We confirmed this by showing that, compared to males, females have lower:

- \checkmark Body weight (S, p<0.001) (Fig. 1a and 1b),
- \checkmark WAT pad weight (S, p=0.000) (Fig. 1c and 1d),
- ✓ % fat mass (S, p=0.018) (Fig. 1e),
- \checkmark GTT area-under-curve (AUC) (S, p=0.000) (Fig. 1f and 1g), and
- ✓ Fasting glucose (**Fig. 1h**).

We confirmed that activation of the sympathetic nervous system specifically in adipocytes through the beta-3 adrenergic receptor (β 3AR) via the chemical ligand <u>*CL316,243* (*CL*)</u> is sufficient to:

- ✓ Decrease body weight (T, p=0.037) (Fig. 1b),
- \checkmark Reduce visceral adiposity (T, p=0.001) (Fig. 1c), and,
- ✓ Improve glucose tolerance (T, p=0.000; T=0.007) (Fig. 1g and 1h).

Hypotheses

(a) Female WAT (PGAT or SQAT) will be more sensitive to CL-induced browning.

(b) The PGAT depot will be more responsive to CL in females, compared to SQAT, but there will be no differences in response to CL in male WAT depots (PGAT and SQAT).

Results

The beneficial effects of CL on *body composition* and *glucose homeostasis* are <u>non-sex-</u> <u>specific</u> (i.e., females and males respond equally to CL) (SxT, p>0.05) (Fig. 1).

Our data indicate that PGAT pad weight (T, p=0.001) (Fig. 1c) is more sensitive to the effects of CL compared to SQAT (T, p=0.153) (Fig. 1d).

We show that the effects of CL on mitochondrial protein expression are <u>depot-dependent</u> and <u>sex-specific</u>, such that:

Given Females had greater uncoupling protein 1 (UCP1); however, this was only observed in PGAT (S, p<0.001), not SQAT (S, p>0.05) (**Fig. 2a**).

□ Female PGAT was more responsive to CL-induced UCP1 expression (SxT, p=0.011); however, sexes were equally responsive in SQAT (SxT, p=0.444) (Fig. 2a). □ PGC1a protein expression responded significantly better to CL in male SQAT (SxT, p=0.046); whereas in PGAT, females were more responsive (SxT, p=0.026) (Fig. 2b). □ Male PGAT had lower OXPHOS protein compared to female PGAT (S, p=0.010), whereas there was no sex effect in SQAT; furthermore, CL increased total OXPHOS protein expression in both PGAT and SQAT (T, p>0.05, both).

We show for the first time that CL increases glucose-related protein 75 (GRP75), in both depots, in both sexes (T, p<0.05, both) (Fig. 2d).

Lastly, while female PGAT had greater adiponectin, males had higher adiponectin in SQAT (S, p<0.05, both) (Fig. 2e), and CL increased leptin expression only in PGAT (T, p=0.016) (Fig. 2f).

