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Background information

G

- Dynamics deals with systems that evolve over time
- Nonlinear examples (products, powers, and functions of x)
- The goal is to study nonlinear dynamics from a bottom-up
perspective
- One-dimensional
- Two-dimensional
- Three-dimensional and higher (Chaos theory, fractals, etc.)

- All figures/diagrams taken from the book Nonlinear Dynamics
and Chaos



Fixed points and points of stability

Fixed point
- Fixed points are found where x =0 Points of Stability
(y=0) | Stable points
- A fixed point that is known as an
- attractor

- Drawn 1n as a “filled-in point”

Unstable points
- A fixed point that’s flow 1s known as a

7<f(x)= x* -1
/é/ i x
repeller

s 5 - Drawn in as an “empty” point




Population Model/Example
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Figure 2.3.3



Bifurcations

- Bifurcations are qualitative changes in the dynamics of a model,
problem/example, graph, etc.
- |.e., fixed points can be created, destroyed, stability changes, etc.

- Types of Bifurcations:
- Saddle-node
- Transcritical
- Supercritical Pitchfork

beam beam "buckles”
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Figure 3.0.1



Types of Bifurcations with models @

Saddle-node Bifurcation

Figure 3.1.1
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X X X
(a) r<0 (b) r=0 (c) r>0

(a) r<0

Figure 3.2.1

X =rX - X2 stable

Transcritical

B2

X x
b) r=0 ) r>0

uuuuuuuu

Figure 3.2.2




Types of Bifurcations with models
Supercritical Pitchfork
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Figure 3.4.2



Introduction to phase planes and phase
portraits (2-D)
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- Phase planes are 2-D images of how a certain example will play out over

time using trajectories
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Figure 6.1.2




Poincare-Bendixson Theorem

Existence and Uniqueness Theore
@_* - If f 1s continuous ly differentiable,
then existence and uniqueness of
solutions are guaranteed!
Figure 6.2.1
- The Poincare-Bendixson Theorem

states that, in a closed, bounded
region where fixed points are not

present, a trajectory MiUS |
| approach a closed orbit.
- Ex: Hopf bifurcations (chemical

oscillators), spirals, limit cycles,

etc.
Figure 6.2.2



Future plans for research

- This research will continue to focus on 2-D dimensional flows
- In the future, the research focus will be on chaos theory and its
applications
- Applications may include weather prediction, biological
Inequalities, population growth, and more
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