Nonlinear Dynamics: a look into onedimensional and two-dimensional flows

Researcher: Luis Schneegans, University of Missouri – St. Louis, under mentorship from Dr. Montgomery-Smith

Funded by Missouri Louis Stokes Alliance for Minority Participation (MOLSAMP)

STUDIES IN NONLINEARITY NONLINEAR DYNAMICS AND CHAOS

With Applications to Physics, Biology, Chemistry, and Engineering

STEVEN H. STROGATZ

Background information

- Dynamics deals with systems that evolve over time
 - Nonlinear examples (products, powers, and functions of x)
- The goal is to study nonlinear dynamics from a bottom-up perspective
 - One-dimensional
 - Two-dimensional
 - Three-dimensional and higher (Chaos theory, fractals, etc.)
- All figures/diagrams taken from the book *Nonlinear Dynamics and Chaos*

Fixed points and points of stability

Fixed point - Fixed points are found where $\dot{\mathbf{x}} = 0$ (y = 0)

Points of Stability Stable points

- A fixed point that is known as an attractor
 - Drawn in as a "filled-in point"

Unstable points

- A fixed point that's flow is known as a repeller
 - Drawn in as an "empty" point

Bifurcations

- Bifurcations are qualitative changes in the dynamics of a model, problem/example, graph, etc.
 - I.e., fixed points can be created, destroyed, stability changes, etc.
- Types of Bifurcations:
 - Saddle-node
 - Transcritical
 - Supercritical Pitchfork

Types of Bifurcations with models

Saddle-node Bifurcation

Transcritical

Introduction to phase planes and phase portraits (2-D)

- Phase planes are 2-D images of how a certain example will play out over time using trajectories

Poincaré-Bendixson Theorem

Figure 6.2.1

Figure 6.2.2

Existence and Uniqueness Theorem

- If *f* is continuously differentiable, then existence and uniqueness of solutions are guaranteed!
- The Poincaré-Bendixson Theorem states that, in a closed, bounded region where fixed points are not present, a trajectory MUST approach a closed orbit.
 - Ex: Hopf bifurcations (chemical oscillators), spirals, limit cycles, etc.

Future plans for research

- This research will continue to focus on 2-D dimensional flows
- In the future, the research focus will be on chaos theory and its applications
 - Applications may include weather prediction, biological inequalities, population growth, and more

Reference

 Strogatz, S. H. (2015). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second Edition (Studies in Nonlinearity) (1st ed.). CRC Press.

Acknowledgements

- Thank you for listening to and/or reading my presentation
- Appreciation for MOLSAMP, University of Missouri Columbia, and Dr. Montgomery-Smith for this opportunity