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DEAR SIR; 

We beg to present you with the first number of our 

little Scientific Journal and request that you will examine 

it, with a view to assisting' us in filling its pages with subject 

matter that is worthy of the effort which we have in view. 

We desire to publish neat solution of problems in Pure 

and Applied Mathematics, short cuts to engineering and 

physical formula:, theoretical investigation of subjects 

that are new or interesting from the novelty of treatment, 

chemical investigations and analyses which are of interest 

to the profession. 

We ask your leniency of criticism for this our first effort, 

dependent as it is entirely upon home talent and mechan

ical execution. We believe that in future numbers much 

of the crudity of the latter will disappear, and that with 

your contributions the quality of the matter printed will 

be much improved. 

Respectfully, 

THE EDITORS. 





PROSPECTUS. 

"* * * * Mm the w01-kers, ever reaping sometlzing 
new; 

That 7.ohiclz they have done but earncst of thc tlthlgS tlzat they 
shall do:" 

Upon the first appearance of a s~ientific periodical it is well 
to declare its intent and purpose, and to define the place in 
scientific literature which it hopes to take; for the obligation is 
thus incurred to accomplish the purpose, to fulfill the design, 
and to reach the place. The danger before the untried publi
cation is, as with the individual, that of placing the objective 
point too high, and in the effort passing ignominiously beneath 
the goal. Fortunately scientific work is honest, and its creed 
is truth; and in honest work and honest failure there can be no 
disgrace. 

There is a considerable amount of scientific investigation go
ing on at the present day which is of no contemptible order of 
merit, and which really deserves the name of research. This 
class of work is being done by the younger men, who are 
working earnestly and honestly; for the love of their subject, 
and for the love of the work itself. These are the men upon 
whose shoulders, in the coming years, as the masters pass away 
their mantles fall. 'These are the men from whose ranks in 
maturer time, will be called those who are to inherit the migh
ty responsibility of developing scientific truth, to grope in the 
darkness further on, to feel the way to clearer thought, to show 
the way to higher reason, to throw the light upon the mists of 
doubt and clear away the error. 

It is for this dass of younger workers that this publication 
n<ls its being, it is for them to give it success or let it fail. The 
seiection ofits name is not from pedantry, but because it has 
in itssemsea twofold meaning. Its pagts are open to work in 
Mathematics, Pure and Applied; to Physics and toChernistry, 
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the exact sciences of the Bachelor's degree. On the other 
hand the name suggests the status of the workers, for it is not 
intended to be an undergraduate's plaything, nor yet does it 
aspire to the more powerful thought of the master workman. 

Its object is to encourage and foster the spirit of investiga
tion and original thought. Its pages are to show research and 
originality in results which are new. The propounding and so
lution of questions, which by their novelty are interesting, is 
also invited. 

Mechanically, every effort will be made to secure good work 
in material and typography, to avoid errors of printing as near
ly as may be, and to present an attractive and well proportion
ed pamphlet. 

The number of pages in each issue is not necessarily limited, 
but will depend entirely upon the amount of matter presented 
and accepted for publication. 

A nominal subscription fee of one dollar per volume of four 
quarterly numbers is asked, believing it to be worthless unless 
of at least that pecuniary value. However, on written request, 
the name of any scientific worker will be placed on the sub
scription list for the first volume j provIded such a request be 
assumed as an obligation to pay the fee when the volume has 
been received, if in the recipient's estimation the character of 
the work in the publication deserves it. Duplicates and re
prints of all articles printed will be furnished the authors free 
of charge. 

We hope and we also believe that the masters in scientific 
thought will not ignore us altogether; but will encourage us 
from time to time by appearing in our modest pages, for the 
purpose of encouraging and suggesting lines of thought to 
younger men, whose earnestness and whose honest work com
mands respect, albeit they fall into error in their efforts and 
need correction: for younger hands must yet take up the torch 
and spread the light which older m~nds are now preparing. 

SCIENTlJE BACCALAUREUS. 
June, 1890. 
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THE RAILWAY TRANSITION CURVE. 

By PROF. W. H. ECHOLS. 

1. In the Enginee1'l'ng News of date May 4, 1889, the writ
er presented the subject. of transition curves in the solution of 
the following problems. 

I. To pass from the ta11gmts to a DO CU1'1Je by n stations ofa 
dO cur'lIe. 
2. To pass from the tangents to a DO cui-lie by n sta#011S of a 

dO!, and m stations of a d0 2 cutzle. 
The general solutions of these problems are there given and 

the results applied to two particular cases respectively as fol
lows: 

(I.) When d"= 2° and n = 2, we have for the tangent dis
tance 

( 5716 I 110 + DO-2 T - ...... _._+ 7 J ta..- 200--. - DO ~. DO 

The length of the curve is 

r D O-2 
L= Do+4-U' 

The effect of the transition being to move the curve 1.1Z an 
amount 

( ~I - ~ ) setr. 
In which formulae, r is the angle of intersection of the tan

gents in degrees. 
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(2.) When 1Z = m =d 1 =1 and d2 = 3. we have the corre
sponding formulae: 

( 5716 J 1 D-2 T= --y;- + 5.2 ta"21 + 200 -F' 

I I)-2 
L= IJ +4 -I)-' 

and 

(~2_~J set!' 

2. These formulae being almost identical and quite simple 
it was proposed to use them in locating railway curves. It 
was assumed that up to D = 2° no easement was necessary in 
the transition from the tangent to the curve, and it was desgn

ed that for 2°<D < 3, the curve in (I) was to be used while for 

3° <D< 6° or more, the curve (2.) was to be put in. 
In view of the possibility of these two particular cases not 

being "calculated to fulfill all the requirements for a system of 
transition curves, nor to replace such a system;" it is proposed 
in the present paper to develope the transition curve in all its 
generality and to apply the results to deduce a system of tran
sition curves for railway location. 

3. The transition curve must afford an easy change of cur
vature from the tangent to the curve. It is also much to be 
desired that it should be located at once with the transit by de
flection angles and as easily as can be done a . simple circular 
curve. The point of curve, or what is equivalent thereof, the 
tangent distance must be obtained with about the same ease 
as that of a simple curve and finally the location must differ as 
littleas may be from that which it would occupy should no 
transltion curve be employed. 

These requirements lead us then to the following: 
Definition: A Transition Curve is one whose curvature in

creases per unit of arc in arithmetical progression, or whose 
change of curvature per unit arc is constant. 

The ordinary geometrical equation of such a curve cannot be 
written because the curvature lacks continuity; it is therefore not 
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a fit subject for infinitesimal analysis but for that of finite differ
ences. From the definition of cur?Jature it follows that a tran
sition curve is a succession of circular arcs of unit or of con
stant length, which subtend central angles in arithmetical pro
gression. It is as such, that the transition curve will be inves
tigated, its functions determined and the final results presented 
in working shape for the locating engineer. 

4. Consider two intersecting straights, meeting at the angle 
J, which are to be united by a circular arc of radius R, but in 
order to avoid the sudden change of curvation in passing from 
the tangent to the arc of circle R, a compound curve of tz equal 
circular arcs of radii, rl, r2 ... 1'n proportional respectively to 
I, I/ 2, ... I/n is to be inserted between the tangent and the 
given arc. 

The functions of the compound curve to be determined are: 
(I.) The tangent distance T, or the distance from P. C. or 

P. T the point of tangency of the compound curve from J the 
intersection of the tangents. 

(2.) The length of the curve of radius R. 
(J.) The deflections from the tangent at P. C. necessary to set 

the ends of the equal arcs up to the initial point of the R 
curve; also the deflections from the tangent at the terminal 
point of the R curve necessary to set the ends of the equal 
arcs from that point to P. T 

5. Computation of the Tangent:-
The radii 1~1, 1';:, •.. I'll of the equal arcs are so great with re

spect to the lengths of the arcs that we shall assume that the 
chords of these arcs are equal to the arcs and therefore to each 
other. 

Let the arcs of radii f'l, 1'2, ... rn subtend at the centers 01, 
O2, ••• On ,of their circles the angles d1, d2, ••• dn , respect
ively. From each center, as for example, O~, draw a normal 
(Fig. r.) to the initial tangent to meet the arc whose center is 
O;l. and radius ril, in a point ail; and at aH draw the tangent to 
the arc \I to the initial tangent to meet the perpendicular to the 
initial tangent from the center OH in a point b3• Indicate the 
distances ail b:l and b;~ at by %3 and Z3 respectively. Through 
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b~ and a4 draw II straights to meet the initial tangent making 
with it the angle 90"- tl, thus projecting Z3 on the initial tan
gent into a distance Y3 = z~ ta t I. 

-, 

Fig. I. 

________ ; _______________ r.c.,' 
:~ 
j' , 
"\ 
i 

"1>; 

1~ 

Beginning at P. C. and making the construction as above in
dicated, we have for the tangent distance of the compound 
curve, observing that 

Zm =Ym tatI. 

n n 
= Rta -V+ .l'z + ly, 

I ) 

n n 
={R+ l'z) ta tI+ l'z. 

I J 
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also 

11 = 1'1 - 1'2 -(1'1 - 1'~) co d1 I ,G'1=1'1(I-cod1)-1'2(I-codl) 

~',G' = + Z2 = 1'2 - r:~ -h - 1'0) co (d1 + d~) 
l l t ':;'n'= ~'11 ~ R-'-:(rn'-R) ~o (d1 ~f- dz + ... -hit!) 

or 

Since 

and 

we have, making these substitutions 

and 

n 

};'z = r, -R- trl 
1 

9 
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Therefore 

r 
2 

-co d 1 

-t co 3d l 

2T ... 
- =taJ..J.) 2 

Yl 2 I ( ) co tn (JZ-I)d1 l n n-I 

- [~ - ~ J co tn (n+ I )d1 • 

+ ~s~ 3~1 . 
[ 

si d 1 

+ ~ 2 (I). l + n( n- I )' si tn (n- I) d 1 

+ (~- ~ J sitn(n+r)dl 

6. Computation of the Length of the Curve:-
Consider the n equal chords of the initial transition curve. 

)ndicating the angle between any chord and the tangent at.its 
extremity to one of the equal arcs by d', which is the deflec
tion angle for that curve for that length of chord, and equal to 
half the central angle subtended by the are, we have for the n 
arcs the deflection angles d\, d'z, ... d' n equal respectively to 
tdl> tdz, ••• tdn• 

It follows at once that the angle which the tangent at the 
end of the mth arc makes with the initial tangent is 

m(m+I) d'l' 

Therefore the mth chord makes with the initial tangent the 
angle 

m2 d'l' 

Hence the angle of contingence (intersection angle) for the 
whole of the DO curve is ' 

r-.n(n+I)d1• 

The length of the D~ portion of the curve, in stations is 
then' 

(II), 
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7. Computation of the deflections from the tangent neces
sary for locating the transition curves;-

(z.) Consider the initial Transition Curve. It is desired to 
determine the angle which the long chord from the P. C. to 
the end of the mth arc of the transition makes with the initial 
tangent. 

Project the chords of the curve on the initial tangent and on 
a line normal to it as axes of.'!lt and y respectively. 

The angle which the rth chord makes with the initial tangent 
is (§ 6) 

Hence the projections of the rth chord are 

J:\~l' = C co (1' 2 d'l) and 

The co-ordinates of the end of the mth chord are then 

m m 
"I' (2.:J') X'm=C ... co .m './1 1, 
1 

d )"(2d') an ym= C _ SI m , 1, • 
1 

If then Vm be the above required angle, we have 

(III). 

From which the required deflections are to be computed. 
(2.) Consider the terminal Transition Curve. It is desired 

to determine the angle between the terminal tangent of the DO 
curve and the long chord determined by the end of the D" 
curve and the end of the mth chord of the transition curve. 

The angle which the rth chord of the transition curve makes 
with the terminal tangent to the DO curve is 
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Hence the projections of the yth chord on the terminal tan
gent of the DO curve and a ·line normal to it as axes of .'\:' and y 
respectively are 

.1.",," = C co { (21'-1) n- (1'-1)2 } d'l; 

.:1Yr = c co { (21'- I) 7l- (1'- 1)2 } d\. 

The co-ordinates of the end of the 1nth chord referred to 
these axes are then 

m 
.'\'m= C 1.' co [(2m-I) n-(m-I)2]d'l; 

1 

II, 

Ym= c );.' si [\2m-r) tl- (m-I)2]d'l. 
1 

We have therefore for the reqnired angle-

111 

2.' si [(2m- I) n- (m- I)2Jd'J 
1 

ta T7m== ~m~---------------------
l' co [( 2m- I ) n-(m-- I )2]d' J 

(IV)_ 

1 

From which the deflections for ~unning in the terminal tran
sition are to be computed. 

8. Computation of the External;-
From the figure it is seen that the external distance (the dis

ranee from the intersection I to the mid-point of curve) in 
terms of the external for a simple DO curve is 

n 

E= ER + se -iI 2'z. 
1 

(V). 

The effect of the transition on the location IS then to move 
the curve in an amount 

se-F 
n 

'" ";"2 .. 

9. The five formulae above. ~iven complete the solution of 
the transition curve in all its generality. They are in their 
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present forms worthless to the engineer. It is now necessary 
to fix the value of d 1 and of rl from practical considerations 
of the effect of change of curvature upon moving trains, and of 
the length of arc of uniform curvature necessary for a train 
moving with given velocity to acquire steady motion. These 
data had best come from engineers who have studied more 
closely than the writer the practical aspect of the question. 
We shall make assumptions here, upon these matters, which 
while they are open to question, serve admirably the purpose 
of illustrating clearly the practical applicability of the general 
formulae. 

From what data I have been able to gather it appears that 
a change of curvature of one degree per hundred feet of track 
is not injuriolls nor objectionable, that the transition from a 
tangent to a om degree curve is not objectionable and that 
therefore a I" curve needs no easement. On this basiR the 
following system of transition curves is designed. 

10. It is required to unite two tangents meeting at /0 by a 
])" curve and to pass from the tangents to the curve by arcs of 
50 feet whose curvatures are respectively those of la, 2", 3", 
... n° curves, 7Z being the number of mtegral degrees in DO. 
In other words D" = lZ + m/60, where m is the number of min
utes in excess of the integral number of degrees in D. I shall 
not develope the system beyond D)=8", th'is being the maxi
mum for first-class roads. 

(I.) Tangent:-
In (1.) put r 1 = 5730 and d 1 = _}D. The formula for the tan

gent then becomes, 

T=(R+a)taF+50n (1- 1l~IJ. 
We may change the formula for T into that for the tangent 

to a simple DO curve and apply a correction, thus 

T=TR + {ata-V+50n [I - !l2-t;I J }. 
In which a is to be taken from the following small table giv-



ing values of a correctly to tenths, corresponding to the valu 
of DO for each minute up to 8". 

00' I 0.0 
1:0'--(0 

-io'---- -

"* TABLE 1. 

I 0.05 I 0,1 0,2 i 0,3 I 0,4 

(2.) Length:-
The whole length of the cun'e in chains, in terms of the 

length of the simple DO cun'e is 

_ n(n+ 1) 
L = LR + 1l - -} ----yy-- , 

/ - -!11 (1l+ I) 
D + 11. 

The excess of length over that of the simple curve is In 

chains 

n(lZ+I) 
ll- -2D-' 

Which is independent of J. The effect of the system of 
curves is to sho1tm the D~ cunle, while the increment in length 
of the whole curve over that of the simple D~ curve is not in
creased by the length of the transitions. 

(J.) The deflection angles for setting the Transitions;
(a.) The Initial Transition:-
Putting the value (]:l = 1. in {III.) we deduce the following 

deflections from the initial tangent required to rnn in the ini~ 
tial transition, as tabulated in the line marked Vi. I' 

From these results we see that the chords after the first, sub
tewl at P. c.. aNgles whi~h are in <trithmetical progression with 



a common diffi::rence of ten minutes. These are tabulat
ed in the line marked D,.. They ;m.: easy to rememher and 
are therefore turned off with 

To recover the tangent at the end of the mill chnrd of the 
transition, deflect from the chord to 1". C the 

Since}w I m-~ II is the angie (~ which tht~ tangent at the 
end of the mill arc makes with the initial tangent. These 
are tabulated in the line marked {J\. 

TAIlLE II. 

11 .., 
L. 3 4- (- 7 

r; I 5 2 5 -. 
D" IS .~ '1 ,... ,~,.. I 

.1-2 .~ I~ -
Dt lSi 7 9 0 

jO.o I 00.0 149·9 I99·9 _~99·5 
x 50.0 100.0 149·95 11;19.83 249·55 29<'1.92 'H7·;9 

" 
0.218 1.09 3.0 5 6·54 11,99 I9·Ro 30 .42 I 

(6.) The Terminal Transition:-
To locate the terminal transition in the regular way the tran

sit is set at the end of the D curve and the ends of the chords 
of the transition Ret successively by deflections from the ter
minal tangent of the D curve. Here each vaine of n gives a 
different set of ,I",·fj.~,·+;"n~ 

The table below shows in a convenient and condensed form 
the numerical values of r; for the curves from I to n= 7 chords. 
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These angles (ZIt) have been computed· by formula (IV.) in 
which we put d'l = t, and gavem values from I to n corre
sponding to values of 1Z from I to 7. 

Otherwise the total deflection for the terminal transition may 
be turned off at once from the TABLE II, being the value of 
D t , and the P. T. set by measuring the long chord of the tran
sition C, as computed below and found in the line C of TABLE 

II; transferring to P. T. and running the terminal transition in 
backwards by the angles Vi of TABLE II, which renders the 
TABLE III superfluous. 

1 I. Computation of the . tangent-offsets to the corners of the 
chord polygon of the transition. 

Projecting the polygon on the initial tangent and a normal 
to it as in § 7, we have for y, the offset to the curve at a distance 
z from the P. C., 

m 
J'm = 50 l'si tm2 ; 

1 

And· for the long chord , 

m 
"':m = 50 2' co -}1122. 

1 

Coo = Ym esc Vi =Zm se Vi· 
These values have b~en computed and tabulated in TABLE 

II for the values of m from I to n = 7. 

The intermediate points on the· curve are best set from the 
chord ordinates which are for mid- and quarter-chord respect
ively 1J.8m and hm. It is objectionable that the regular sta- . 
tions cannot be set with the transit nor offset from the tangent, 
but it is so easy to set points on the transition at intervals of 
12~ feet that the regular stations are put in without difficulty. 

12. It has been the writer's purpose in the present paper 
to develope the true transition curve generally, as this has not 
I believe been done. The numerical system of curves has 
been computed to illustrate the. simplicity of the final l,'esults. 
and not to urge its practical adoption over any other system 
which may be proposed. Thus it m.ay be better to. approach 
the curve by a succession of 25 foot arcs. beginning at the tan
gent with a 30' curve and letting the progressIon. be 30" {i,. 
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I" 30', etc., or to let the chords be 100 feet and the progression 
as assumed in the system above. Whatever be the length of 
chora, the initial curvature and the change of curvature, the 
numerical results can be brought to the same degree of work-

. ing simplicity as shown above. Even though Mr. Wellington's 
promised system of transition curves based upon the cubic pa
rabola should prove vastly superior to such as offered here, it 
is still well that this work should be done, for until it is, and its 
practicability or impracticability established, engineers will long 
for the approach to a curve whose curvature increases in arith
metical series for arcs of equal lengths. 

13. The Transition Spiral:-
Before leaving the subject I desire to add a few remarks re

garding the true geometrical curve to which the Transition 
Curve defined in the above is an approximation. 

Geometrically the Transition Curve is then that curve whose 
curvature is directly proportional to the length of the curve, 
or whose radius of curvature at any point is inversely propor
tional to the length of the arc measured from that point to 
some fixed point on the curve. Writing this fundamental prop
erty in the usual symbols, we have 

Hence 

I 
-- =1'7Z S. 

/I 
I 

ds 
dm=-=msds' T (j , , 

If being the contingent angle. 
Integrating this expression between the limits 0 and s, we 

have for the intrinsic equation to the curve, in ~erms of the 
length of the arc measured from the origin, and the angle which 
the tangent at any point makes with that at the origin, 

If = tms2 • 

.. Refer the curve to rectangular co-ordinates through the ori
gin, the tangent there being the x-axis and a normal to it the 
y-axis. 
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Then 

Also 
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dx= co if'ds, 

co cp dcp 

v1n-up 
= co ( t m S2) ds. 

ily = si if' ds, 

si if' dcp 
= v~mif' 
= si (tm S2) ds. 

Thus the co-ordinates of a point on the curve in terms of s 

are 

.:I: = f: co(tms~ds; . y = f: si (-} ms2) ds. 

These integrals we are not able to evaluate in finite terms. 
It is easy to see from the definition of the curve that its ulti
mate destination is an asymptotic point, and that its Cartesian 
equation is of infinite degree. 

To determine the co-ordinates of the asymptotic point we 
must make the superior limits in the above integrals infinite; 
then, treatises on the Calculus show that 

co (t ms2)ds= si (tms2)ds =- -"-. f '" f'" I~ '"" 
o 0 2 m 

The co-ordinates of the ultimate points are therefore equal. 
The curve itself is a very beautiful spiral resembling the sign 
used for indicating integration, the origin is a point of inflexion 
beyond which the curve repeats itself in the opposite direction, 
terminating in an asymptotic point on the same straight line 
through the origin and the other terminus. 

14. Mr. Wellington bases his system of Transition Curves 
upon the geometrical cunre which enjoys the ·property of hav
ing its curvature at any point directly proportional to the dis
tance of the point, measured along some fixed tangent, from 
thepom.tufcQlrtact. Referr.ingthe curve,asabove, to the 
taa.gent as x,..axis .and. the. point of contact. as origin; then the 
curvature at any point is directly proportional to its abscissa oX, 
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or the radius of curvature is inversely proportional to .:1:. 

Tltz's curve is well known in geometrical text-books to be the 
elastica. The above defining property was first shown by 
James Bernoulli. This property written in symbols is 

,lJx=m. 

Putting in the regulation value for p in terms of.:l: and y, we 
have 

d2x 
m{j'i" 

x = ----y--- . 
I ( dx2 J a 

'\j 1 + dy2 

Multiplying by 2 dx and integrating, we have 

2m 

x2=C- I ( dx2)' 
, L I + dy 2 

To evaluate the constant C we notice that when x = 0, then 
dx 
dy = 00, and therefore C= o. 

Finally 

f x2dx 
Y = V'(4m2-x4) 

which is the equation to the curve in terms of an elliptic inte
gral, and which again cannot be evaluated in finite terms. 

Rolla, Mo., March, IB90. 
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THE BEGINNINGS OF MATHEMATICS. 

By PROF. \V. B. RICHARDS. 

Qui currit, legato 

I. 

The human mind is not content with the fact; it desires to 
know the process. The youth who vivisected the bellows in 
order to discover the cause of its action is a type of his kind. 
"Nothing is covered that shall not be revealed;" this is not the 
least of the joys that await the faithful. To unravel the tang
led skein of mysteries that weave us about, to bringthe hidden 
to light, to illumine the dark places, to rescue from the un
known some of its treasures-this has been the incentive that 
has animated man in every age, has raised his "clear spirit" to 
"scorn delights and live laborious days," has urged him for
ward from point to point of achievement. It is the spirit that 
inspired the wonder-working mind of Aristotle, lit "the lonely 
lamp of Erasmus" and smoothed out "the restless bed of Pas
cal." The thirst of discovery, like Io's gad-fly, will not let 
man be; it goads him like Jove's ill-fated favorite into restless 
wanderings through all the obscurest corners of the earth, and 
all the trackless fields of intellectual research. It wafted the 
ships of Columbus toward the western world, led De Long to 
his frozen grave in the wastes of Siberia, and has lately sent 
Stanley across deserts, over mountains, through savage tribes 
to the heart of the Dark Continent. Nor has its influence been 
less present in the intellectual world, than in the sensible. 
Needless to call the honor roll of great minds that attest it. 
The mind knows no rest. The horizon of its aspirations re
cedes as it is approached. Its stopping points are only night
camps, wherein it prepares for the morrow's march. It may 
need to intrench itself against the powers of doubt and unrea
son, but it does not find an abiding place. It never reaches 
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the end. N or can it. Truth is infinite. A .Newton about to 
die ptotests 'sorrowfully that he "has only been picking up 
pebbles beside the great sea-shore." At the same time that 
we aspire to add to the world's mental enrichment, it cannot 
f~il, it.see.ms to me, to be both helpful and interesting to con~ 
sider the steps by which what we have has been won. It is 
for this reason that we design to set down in a shape suited to 
general readers some account r;>f the beginnings 9f that science 
which ccnfains within itself the germs of all other sciences. 

The student of the Mathematics of to-day may well be as
tounded at the vastness of the field which is open to him,. at 
the multitude of directions in which investigation has been 
pushed, and the wonderful achievem.ents that have been made 
.in each. If, in the midst of his gJ;atulation.upon modern <l,t
tainments, there is, huwever, danger of his conceiving a con
tempt fQr .the lesser success -of earlier workers, he shQuld' re
flect that, if we see farther into the mysteries whosesolutio':1 
has been the problem of a,ll ages, it is Rot necessarily because 
our intellectual vision is so much more acute, but panly, at 
least, because, as has been said, "we stand upon the shoulders 
of giants." The superiority of modern Mathematics over the"" 
ancient does not so much arise from a comparison of the body 
of truth acquired, as it follows from the discovery of new meth
ods-the improvement in technique, as it were. We do not 
build structures larger than the Pyramids, but we know how to 
build them more easily. One who reads the history of Math
ematics wonders not more at the advancement which the mod
erns, having all the experience and the result of the labors of 
their predecessors to guide them, have made, than at the great 
fund of mathematical knowledge which the old Greeks were 
able to master with the means at their disposal. It was a pure 
triumph of unassisted mind. Imagine yourself deprived of all 
knowledge, if not quite of Algebraic processes, yet of Algebra
ic notation, which is a chief element of the strength of Alge
bra; conceive yourself unable to use a symbol for a quantity or 
a complex combination of quantities, to use + or - or to 
write an equation; think how greatly the difficulty of an' ab-
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struse problem would be increased. Yet with such negative 
disadvantages did the ancients work. They were too busy, 
getting out the rich ore from the mine that had been opened 
to them to stop to sharpen their tools or to exchange them for 
new ones. Where they advanced laboriously tn their rude but 
forceful way, we touch off a little Calculus under the obstacle 
and-piffl-it is gone. But what treasures did they uncover! 
What might they not have done if their finesse had been equal 
to their strength! Toone who has not previously considered 
the subject, the antiquity of most of the Mathematics ordinar
ily taught in our colleges is surprising. The Elementary Ge
ometry is practically as left by Euclid twenty-two hundred 
years ago. In England translations of Euclid's work are used, 
while on the Continent, and in this country, the text books-are 
adaptations of his work. Algebra is a comparatively modern 
growth, having been introduced into Europe in the 
thirteenth century, while its symbols were all invented in the 
last four hundred hears. The solution of equations of the sec
ond degree, with general co-efficients. however, was effected 
by the Hindoos certainly as early as Aryabhata in the 5th cen
tury, A. C., and perhaps earlier. Our Analytic Geometry is the 
product of the wedding of the Geometry of the Greeks and the 
Algebra of the Hindoos, brought about by Descartes in the 
first half qf 17th century, but the method of analysis may be 
traced back to the school of philosophers immediately follow
ing Plato, while most of the properties of the conic sections 
were known to Apollonius-the "Sublime Geometer," as he is 
called by Geminus-and are announced by him in his "Treat
ise on Conics," (3d century B. C.) The Infinitesimal Calculus 
could not arise without Algebra and its invention was the sec
ond great fruit borne by that science in the seventeeth . cen
tury; but the germs of its. fundamental analysis are to be found 
in Archimedes' "Method of Exhaustions" and many of the 
practical problems to which it is appli:ed-such as the quadra
ture of surfaces, the cubature of volumes, the calculation of the 
value of 7r were successfully attacked by the early Greekmath
ematicians. One of tlH~" greatest ,of m.od,em mathematicians 
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pays a just tribute to one of the greatest of the ancient, when 
Leibnitz says, "Those who can understand Archimedes admire 
less the discoveries of the greatest moderns." Even what is 
known as Modern Geometry is not altogether so recent as 
might be imagined from the name. Some of the fundamental 
theorems concerning transversals are enunciated and demon
strated by Pappus who lived in the 4th century A. C. This is 
six huudred years later than Euclid's Geometry, but only in 
the most relative sense could it be called Modern. The same 
writer enounces without demonstrating the theorems conn!,!cting 
the surface and volume generated by ths revolution of a plane 
curve about an external axis in its plane with the path describ
ed by the centroid of the perimeter and area respectively-us
ually cited as Guldin's Theorems. It is not our purpose to in
stitute any invidious comparison of the merits of the ancient 
and of the modern mathematicians, similar to that which in the 
field of letters fomented the celebrated controversy that two 
hundred years ago divided English men of learning into hostile 
camps, but· a suggestion of the respectable and even admirable 
attainmeI1ts of antiquity may stimulate an interest in the dis
cussion which we propose. 

Mathematics is a comprehensive term which imports very dif
ferent things to different people. To the child just beginning to. 
wrestle with arithmetic, it probably means the multiplicC),tion 
table and art outlying unexplored territory of unknown dimen
sions. To the average "Young Ladies' Seminary" 'young ladi 
it means,-or it used to mean, for late years have shown an 
improvement in this respect-Arithmetic, some dalliance with, 
Algebra, the memorizing of certain portions of Euclid, and. 
perhaps a faint suspicion of Trigonometry-the prevailing i4ea 
of this subject being that it is something in the back of. Geom
etry. To each of us;perhaps, it means as much ashe knows, 
a good deal that he suspects, and a great deal more that he. 
would like to know. Mathematics is the generic namtpopu~ 
larly applied not ~\=rely to the labored and difficult proces~es 
ofi a' Newton or a Laplace but as well to the first slate-scribblings 
of the primary scholar. Including, thus, that which pertains so 
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closely to our earliest mental feats, we might suppose that in 
order to get to the beginnings of Mathematics it would be nec
essary to go back very nearly to the beginnings of things-to 
the time "when Adam delved and Eve span." Our introduc
tion to numerical calculation occurs at so early a stage in our 
experience, it is so nearly contemporaneous with the utmost 
backward reach of memory, that it is not strange if our prone
ness to judge others by ourselves leads us to infer that the 
same notions came to primal man at a correspondingly early pe
riod in his history-indeed were a natural and necessary out
growth of his mentality. 

That these presumptions are erroneous is sufficiently indi
cated by the facts which we are about to adduce. Percepts 
antedate concepts, The mind of early man doubtless proceed
ed, like that of children, by the inductive method-ascending 
from the cognition of particular facts to the mtuition of general 
law!'!. We think by means of pictures more or less clearly 
photographed on the mental curtain. These pictures are either 
of the things themselves, or, especially in the case of an educat
ed person, of the names or the symbols of the things thought. 
Try to recall some familiar quotation, and memory, repeating 
the original process of thought, will bring before the mental 
vision either the scene or action described, or, it may be, the 
lines as printed in the text from which you learned it. Say 
over those lines in which Virgil tells how Priam fell at the 
foot of the altar that streamed with the blood of his slaugh
tered son, and either you shall see the sad Scene enacted be
fore your mind's eye, or, it may be, there will pass before you 
the lines of some old dog-"eared copy' of the Augustan epic, 
from which, in school-boy days, you droned ,out your task. It 
is easier to think of concrete, sensible objects, than of the ab
$tract, because of the former we may make.3. definite picture, 
W~t:ake advantage of an this in educating 'oliildlten." . We till 

. tiMir'books with pictuT¢S: i In ,teaching a cnUdbtudUnents 
of Antbmetic we ask him at first oot~~ Hoc,*, mutliare2 and 3?" 
but -tRow many appieSare2 apPle&aBd 3a~'''.'&r ~"H~wma~ 
marbles are~r~,aOO3'~lesr'l' e~li_:t~'~~';l 
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picture out of the problem, and asking him to tell just 
what he sees, Thus we lead him inductively to the notion 
that two and three make five independently of the nature of the 
substance numbered. The unaided human mind, working out 
its own destiny, it may be assumed, made its tedious progress 
over a similar track. The primal man, as he drove in succes
sion two pairs of oxen into a corral, was aware of a quadruple
ness of objects, though he did not ·as ye.t separate in his mind 
the number from the things nt~mbered. It was a long step 
from this single experience or a greC).t number of such . experi
ences to the dawning of the abstract law that two and two 
make four-whether it be of oxen or what not. When the 
idea of abstract number had begun to stir, the next thing would 
be to find names for the numbers, and no great advance in 
such thought could be made until the invention of words to in
dicate number made mental combination of numbers possible.· 
That we are correct in inferring that this development of the idea 
of number was not not neccessary nor immediate, is shown by 
the fact that tribes are to be found at the. present time which 
have not attained such advanc;ement. The Chiquito, the lan
guage of the natives of Eastern Bolivia, is said to be absolutely 
destitute of numerals. Counting is unknown to them. The 
word that comes nearest to meaning "one" is that which signi
fIes "itself" or "the same;" beyond this point the mathematical 
ability of these children of nature does not go. Their mind 
surrenders at the difficulty of grasping so large a number as 
two, and expresses it and all greater multitude by the indefinite 
word for "many." The Papl!ans of Torres Strait have names 
for only one and two. The Bushmen Qf Australia are scarcely 
more advanced. Their numeral system ends ·at three. The 
traveler, Pelleschi, relates that on the plains. known as EI Gran 
Chaco, in South America, he encountered a chief who could 
not count ~is own fingers. Theon, of Smyrna, one of the earliest 
writers on Arithmetie, states that "Agamemnon was so ignor
ant of the names-of numbers as not to know that he had two 
feet." The same writer· reproaches Pythagoras, Archytas and 
Philolaus for not having distinguished between '(unity" and the 
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number "one"-between the numbers of objects and the objects 
themselves. "Six oxen," says he, "constitute a sensible num
ber; six is an intellectual number." We thus have abundant 
evidence that the idea of abstract number was slow in tak
ing shape, and that any adequate- system of numerical nomen
clature was the result or the concomitant of a considerable 
mental progress. 

Before this had been achieved, when the question "how 
many?" was asked, the answer would naturally be given by in
dicating a corresponding number of some other convenient ob
jects. The ready means of replying to such questions seemed 
made to hand-we use the expression in good faith with no in
tention of punning-in the ten fingers. Nothing could be more 
natural than that the untutor~d savage, in the absence of voca
bles suited to the purpose, should call the fingers to his aid in 

'conveying numerical ideas. We, to-day, very commonly use 
the same artifice when we wish to present such information si
lently, while for the deaf, as is well known, a digital alphabet 
has been invented. The Arithmetic neophyte is with great 
difficulty to be restrained from the pernicious habit, when call- , 
ed upon to "do 'sums" in addition, of using his fingers as a kind 
of restricted abacus. The Wallachion peasant is said to per
form all multiplications obove 4 X 4 with the assistance of his 
fingers. 

The use of the fingers in this connection affords the reason 
that the numerical systems of all civilized nations are decimal. 
Traces of the connection between the assumption often as a 
radix and its occurrence as a natural number are to be found 
in various languages. In the Polynesian, lima, i. e. "hand," 
means five; in the Zulu tatikitltjJa, "taking the thumb," signi
fies six; in Greenlandish aifersanek jJingasut, i. e. "taking the 

, other foot three" (the two hands = IO, one foot - 5, and 3) 
means eighteen. In the Maya dialects of Central America the 
word for twenty is hun v1Z'nak, one man; that is the number of 
fingers and toes belonging to one person. Similarly in New 
Caledonia the word for man means twenty, while "five men" 
means one hundred. In English, likewise, the old fashion of 
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counting by scores smacks of the same origin-with which we 
may compare the French way of expressing ninety-three, for 
instance, by quatre-vingt-treize, four twenties plus thirteen. The 
wOl'd that we use for the figures of a number-digit-is directly 
from the Latin digitus, a finger, and indicates the same connec
tion. 

These primitive movements in the direction of mathematical 
cognition are only to be considered the beginnings of Mathe
matics in the same relative sense in which the first stone thrown 
was the beginning of ballistics, or the first tree hewn across a 
ravine was the beginning of engineering. For the origin of 
Mathematics as a science we'must look to the Greeks-to 
that prolific national mind to which all the learning of the West 
may be traced as to its spring. In the domain of learning all 
roads lead back to Greece. The beginnings of whatever is 
worthiest in Literature, in Philosophy, in Art, in Science were 
made by the marvelous people who have given us the epic of 
Homer, the Logic of Aristotle, the sculptures of Phidias and 
the Geometry of Euclid. No tribute of admiration can be too 
high to express a just sen'Se of our indebtedness for the imper
ishable legacy which we have inherited from them. There is 
no part of the world's wealth to-day with which-it might not 
better part than with its attainments in those departments of 
mind in which the earliest impulse, and frequently the most 
lasting monuments, were the products of Hellenic thought. The 
distinctive features of the Greek intellect were just those which 
Were best suited to grapple with the problem that confronted 
them. This problem was two-fold-the extension of knowledge, 
and the formation of truth into a connected system. The same 
problem it may be said, confronts all periods. True. But the 
circumstances in which the Greeks approached it were not the 
same as those in which later times, enjoying the fruits of their 
labors, have succeeded to it. In the first direction only a be-" 
ginning had been made, while the second was yet unattempted. 
To each brapch of this task the Greeks brought an especial fit
ness. The most prominent characteristics of their mind were 
the instinct of investigation and a genius for form. The first 
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finds its conspicuous development in Socrates, who declared, 
r \ 'V ~ ~ ,,* 
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while both attain their consummate flower in Aristotle. -The 
enthusiasm which carne with the birth of philosophy stimulated 
inquiry in every direction in which truth was likely to be its 
reward. In the confident words which Bacon used of himself, 
they "took all knowledge to be their province." They were 
not content with anyone-sided development of a single branch 
of learning. Older peoples had attained some advancement in 
special fields of knowledge. The Assyrians, as we shall see, 
had reaped some results from centuries' study of the stars, and 

, the Egyptians possessed the rudiments of Geometry.' But the 
comprehensive intellect of the Greeks proposed to itself as its 
goal nothing less than the sum of all knowledge. 

The genius for form is the germ of that sense of beauty, 
both real and ideal, which showed itself in every phase of 
their life, which was the informing spirit alike of their art and 
of their ethics. This element of order in conjunction with, the 
iuspiration of inquiry produced for the first time a philosophic 
spirit. The results of their investigation were to be compared, 
digested, systematized. More; facts were no longer the end of 
their search; they went further and sought principles. It no 
longer sufficed to ask "an sit;" they must know "cur sit." 
They did not scorn to learn what they might from others; but 
they seemed to have the power, like the fabled Midas of their 
own legend, of transmuting all they touched to gold. The sci
entific method, which appears for the first time with them, was 
the agent of this alchemy. 

While the history of the science of Mathematics finds its ap
propriate point of departure with the Greeks, a study of earlier 
culture is necessary to an understanding of the state of know
ledge at the time their intellectual activity began, and the share 
in its subsequent development contributed by other nations. 
Either prior to Greek civilization or contemporary with it and 
running paralel to it, we may note three early seats of culture 

*1 must needs spend my day;; phiio,~ophizjng, e'{amining both myself and 
others. 
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from which the outcome of Greek thought was influenced; viz, 
Babylonia, Egypt, Phcenicia. We do not include India in the 
list, because, while the Hindoos justly claimed a venerable an
tiquity for their civilizatiori, there was no communion between 
them and the Greeks until after the conquest of Alexander 
(3 2 5 B. C.), and they made no impress on the Mathematics of 
the West until Alge-bra began to be studied in the Middle 
Ages. Each of these countries contained a considerable 
population and the first two were the homes of powerful em
pires. 

Movements of population do not occur by chance or at the 
dictation of caprice; they are determined by causes usually not 
difficult to discover. Since the unfortunate mis-step-it would 
be disrespectful to use a harsher word-of our first parents, 
the chief energies of man have been directed toward an at
tempt to escape the curse of labor then pronounced upon Ad
am and his seed. He is ever seeking to live, either by the 
sweat of somebody else's brow (which is called "genius':), or 
by as little as possible of his own <-which is popularly known as 
"talent"). The agitation now making by Labor organizations 
looking toward a reduction of the hours of labor, is merely a 
fresh manifestation of a well-nigh world-old spirit. People de
sire, they have always desired, to get a maximum of existence 
out of a minimum of exertion. Hence in the early days 

"When the world was all before them, where to choose" 

tribal communities would seek for habitations.lands in which the 
climate was least rigorous and changeable, where Nature had 
provided most generously for their herds, and. where the soil 
responded most kindly to tillage. Observe how population 
tended to settle down into southern peninsulas, as if it were a 
molten mass operated upon by gravity. The force which was 
actually at work acted just as surely. It was the attraction of 

. a clearer sky and a more genial sun. The fact too that migrat
ing parties found themselves in a kind of cul~de-sac' with the 
sea hemming them on all sides but one contributed toward stop
ping their wanderings. Let us loiter from our subject long enough 
to say-what may have been stated before-that it may be 
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roughly Jaid down as a law, not, however, to be too strict
ly interpreted, that the civilization of a primitive people varies 
directly as the ratio of their sea-cqast to the total area of their 
country. We· may cite as examples on the one hand Greece, 
Italy; on the other, Africa. The reason is not far to seek. 
Navigation in early times was far in advance of any system of 
land travel. The sea was a means of communication, connec
ing, rather than dividing, distant peoples; while those who 
dwelt far inland were cut off from association with their fellows 
and failed to get that sharpening of ideas which comes from 
mental attrition. 

It is in accordance with the natural law to which we 
have referred that the rising of the traditional "cur
tain of History" discloses the two oldest civilizations flourish
ing in the rich valleys of the Nile and of the Tigris and Eu
phrates. The latter district, close to what legend proclaims 
the cradle of the human family, was at an early date inhabited 
by a Turanian tribe, akin to the Magyars of Hungary, the Lapps 
and Finns of the Arctic circle, and th e Tartars of the Russian 
steppes. At first a nomadic people they became later 
builders of cities, and excavations in recent years have 
brought to light interesting specimens of their ar
chitecture. Indeed their architectural propensity is represent
ed as having proved a source of the direst misfortune both to 
them and the world at large; for on "the plain of Shinar" they 
essayed to build a heaven-reaching tower-an act of presump
tion which brought upon them-and us-the confusion of 
tongues. The name of the place of this unfortunate' experi:
ment was called Babel (confusion), from which, according to a 
popular etymology, the name. Babylon is derived. Th~ south
ern branch of this people, the Accads, came in contact with a 
Semitic tribe who in time became the dominant portion of the 
mixed population. . These were the Chaldeans, from whose 
chief city, Ur, the biblical records represent Abraham as emi
grating to the land of Canaan. To the north, in the higher 
lands dividing the waters of the great rivers, dwelt a kindred 
tribe, the Assyrians, and the history and art and science of the 
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two peoples are closely interwoven. We have spoken of the 
whole territory as Babylonia for the sake of a single name, but 
their common learning is more usually styled Assyrian. 

The . nature of the mental product of these early workers is 
what might be expected from their habits and environment. 
Chiefly a pastoral people, they had their wealth in flocks and 
herds, So we find in Genesis contention arising between the 
herdsmen of Lot and of Abraham "because the land was not 
able to bear their flocks." The climate and their occupation 
made them dwellers in the open. air. They learned to guide 
themselves by means of the stars across the vast level or bil
lowy tracts of land, lying before them like a sea. There were 
no printed volumes to read, but the newly edited book of Na
ture in all its freshness, invited and compelled their study It 
is not strange that the herdsman, lying on his back, while the 
cattle grazed, should have attempt~d to decipher the myster
ies of that brilliant page unrolled each night before his wonder
ing vision; that he should learn to look for the coming of the 
stars as of some distant, supernatural companions; and that 
from a repeated contemplation of the heavenly bodies he 
should grow to reverence and adore them as divinities. Thus 
natural curiosity, material interest, and religious veneration, all 
conspired to make :the Assyro-Babylonians students of the 
stars, and brought it about that their chief attainments in know
ledge were in connection with Astronomy, The inception of the 
study of Astronomy occurred among the Accads, to whom their 
observatories were instruments at the same time of science and ' 
of religion. Their successors followed the impetus thus given. 
The stars were numbered and named, and a chart of the heavens 
was constructed. A calendar was formed in which the year 
was divided into twelve months of thirty days each. To sup" 
ply the deficit from the actual number of days in a year, a 
month was intercalated every si:l,S.years, and the priests were 
charged with the insertion of other months at such periods as 
were necessary. Eylipses were observed, and a recordofthem' 
kept. They are said to' have invented the sun-dialandclepsy
dra; also the lever and the pulley. The needs of the extended 
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commerce which they gained in later years gave rise to the in
vention of weights and measures the origin of which are some
times attributed to the Phcenicians. 

The founders of the ancient civilization in the valley of the 
Nile, it should scarcely be necessary to say, did not belong to 
the African race. Their own traditions assert them to have 
been the original inhabitants of their land, but the evidence 
that they were of Asiatic stock is conclusive. Their language 
is what is known as a member of the Hamitic family and bears 
such an analogy to the Semitic and Aryan tongues as to indi-
date a relationship, if not a common origin. The Egyptians 
gloried in the antiquity of their institutions. The darkness 
from which they emerge into history sheds no ray of definite 
light upon the steps of their advancement, but the gigantic 
structures of their erection, standing amid the encroaching 
sands of the Sahara, are mute but indisputable witnesses of 
their craft. The gloomy imagination of this venerable people 
seemed to take a morbid pleasure in its own awe. The inferi
ority of man to the powers of nature, always borne in so strong
ly upon dwellers in a tropical region, weighed upon their spir
its until whatever by comparison showed the littleness of man, 
like a basilisk, attracted while it terrified them. The builder's 
instinct was present in them as in the Assyrians, but the object 
which they set before themselves was not-as with the Greeks 
-to please with the beautiful, but to impress with the colossal, 
the huge, the awe-inspiring. Magnitude of dimension, not 
grace of outline, was the salient feature of their architectl,lre. 
The Pyramids and the Parthenon tell the whole story of the 
minds that conceived them. Like the Babylonians, they sought 
to "unwind the process of the stars," and produced a calendar 
similar to that of their Semitic kinsfolk. What is most to our 
purpose, they laid the first few rude stones from which the 
Greeks constructed Geometry. 

Sciences are not evolved from the human consciousness by 
definite design. One does not shut himself.up in his study, 
and say "I will straightway develop me a science of chemistry, 
of engineering, of government, or of what not." No ; they 
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arise in response to practical necessity, and grow with the ex
tensidn of experience and of thought in the direction suggest
ed. First the fact, the suggestion, the experiment, it may be; 
then the theory; when the inductive process has gone so far, 
deductive demonstration begins, and the united body of truth 
becomes a science. 

Geometry, the first branch 0f Mathematics to be developed, 
bears in its name the stamp of its practical origin; as it came 
to the Greeks it was simply "earth-measuring." The Assyrians 
had no Geometry because they had no need for it. Occasion 
did not suggest it. They lived a shifting life and had practic
ally unlimited territory at their disposal. They were not de
pendent for subsistence upon any restricted tract of land, and 
minute questions of boundary and area did not arise. Why 
measure the earth when each might have as much of it as he 
chose? But the Egyptians were a vast populace having fixed 
seats in a narrowly limited country. They maintained them
selves by the cultivation of the prolific fields bordering on the 
Nile; there was but a relatively small quantity of tillabl~ land 
to be divided among a great number of inhabitants, and con
siderations of boundary and measurement assumed a vital im
portance. We translate from Herodotus, who traveled in 
Egypt about the middle of the 5th century, B. c., his account 
of the origin of Geometry. The King referred to was Rameses 
II, or Sesostris, as he was known to the Greeks, who reigned 
about a thousand years before the period of Herodotus' trav
els. 

"They (the priests) also said that this king distributed the 
land among all the Egyptians, giving to each an equal quad
rangular portion, and that from this he collected his revenues, 
requiring the holder to pay yearly rent. If the river, however, 
cut off a part of any tenant's allotment, he would come to the 
King and attest the occurrence. The latter would send com
missioners to investigate the matter and to measure how much 
the tract had been decreased, in order that he might pay on 
the remainder an equitable portion of the prescribed rent. In 
this way, it seems to me, Geometry was invented and passed 
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over to Greece. The sun-dial, though, and the gnomon, and 
the twelve parts of the day the Greeks learned from the Baby
lonians."* Here, then among the early Egyptians we find a 
practical problem giving rise to the first seeds of Geometry. 
These seeds bore no fruit on their native soil because the 
Egyptian cast of mind lacked the qualities necessary to pro
duce a science. They never advanced beyond the meagre ru
dimentary knowledge, which they possessed as a result of experi
ence and observation, not as a system of demonstrated truth. 
What they attained, though. is forever notable as constituting 
the suggestion and and incentive to the Geometry of the 
Greek. 

The Phcenicians, occupying a narrow strip of sea coast along 
the most eastern border of the Mediterranean, were a Semitic 
tribe, related in language and race to the Hebrews and the As
syrians. They were a manufacturing and commercial people, 
bold, alert, enterprising, in short, the Yankees of antiquity. 
They made glass ware from the sands of the Belus, and ex
tracted from the 1nure:.:, a shell-fish found along their coast, a 
purple dye which they used in coloring the textile stuff.:; for the 
manufacture of which they were famous. The exchange of 
goods brought them into association with the Babylonians, 
with whom they had an extensive trade by means of caravan, 
and with the Egyptians. The Phcenicians were the earliest 
navigators; their vessels bore the product of their looms all 
along the shores of the Mediterranean, and even beyond them, 
past the Pillars of Hercules into the Atlantic, upon which they 
skirted the western coast of Africa as far south as the Canary 
Islands, and sailed northward to Cornwall. They exchanged 
their manufactured articles for the raw products of the peoples 
with whom they traded. They founded colonies along the 
northern coast of Africa-chief among these, Carthage-in Sic
ily, in Spain and elsewhere. it was on a Phcenician ship, sail
ing to the colony of Tarshish in southern Spain, that Jonah 
took memorable passage. They came into intimate commer-

*Herodotus, Book II, C 10<). 
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cial relations with the Greeks-themselves skilled and adven
turous mariners-and profoundly influenced the early Greek 
culture. 

The ancients regarded the Phcenicians as great inventors; 
the arts of manufacture, Arithmetic, the invention of weights 
and measures, and of an alphabet were all attributed to them. 
More careful investigation has cast a doubt upon their claim to 
originality. The discoveries ascribed to them seem really to 
have been borrowed from the Egyptians and the Babylonians. 
The important work which the Phcenicians did in the advance
ment of civilization was one of distribution. They were the chan
nel through which the influence of the older civilizations was 
borne to Greece. They stood, in this way, to the Egyptians and 
the Babylonians in the same relation which, in later times, the 
Romans held to the Greeks. The former originated; the latter 
disseminated. Richer than all the precious stuffs of Tyre and 
Sidon, they bore to the barbaric West the inspiration of a 
cultu re, destined in fitter hands far to outstrip the achievements 
of its original. So far the progress in the extension of know
ledge was the work of Hamitic and Semitic branches of the 
Caucasian race; their advance was slow and their labors un
fruitful because their learning was a lifeless empiricisin. The 
torch of learning which they bore with but faintly increasing 
brilliance for centuries, and which lighted only the narrow cir
cle of their peI'sonal experience, was soon to be extinguished; 
bi.lt before it expired there was kindled at its flame another, 
whose transcendent brightness was to illumine all the later 
course of Time. Ethnic and political forces brought the ov
erthrow of the dominion of these once powerful peoples, and 
the wave of barbarism which submerged them, buried at the 
same time their civilization. Their part was dont'; and new 
hands were to build upon materials first gotten from them a 
structure of which they had not dreamed. It was the finer, 
keener intelligence of the Aryan Greeks acting upon the mea
gre learning of the older Eastern civilizations with which they 
gained their earliest acquaintance tnrough the Phoenicians, that 
gave the world for the first tim.e a science. In a subsequent 



36 RICHARDS. THE BEGINNINGS OF MATHEMATICS. 

paper we shall speak of the rise of Greek Geometry. 

In preparing this paper the writer has kept constantly at hand the 'Ency
clopredia Brittanica," and has availed himself freely of its store of informa
tion. He has referred especially to the articles Anthropology, Arithmetic, 
Astronomy, Babylonia, Numerals, Phoenicia. The Iconographic Encyclo
predia--Vol. I Anthropology--and Marie's "Histoire des Sciences Mathema
tiques et Physiqnes" have also been consulted with advantage. 

TALLOW CLAYS. 

By PROF. W. H. SEAMON. 

The "Tallow Clays" found in Missouri are soft unctuous 
masses of white, grey, pink, yellow, red and occasionally black 
colors. As taken from the ground they contain a large excess 
of water which they lose more or less rapidly on exposure to 
the atmosphere, shrinking and falling to pieces. During this 
operation which is termed "slacking" by the miners, they lose 
about 30 per cent. of water, and change color, usually darken-.. 
ing. 

The "tallow clays" occur associated with calamine alone, 
though sometimes small lumps are found near deposits of 
Blende. We have lately received from Mr. Jno. Kingston, of 
Granby, Mo., an interesting specimen of an olive colored clay 
from Sucker Flat, near Joplin, which shows some Cadmium. 
The miners of Blende apply the term "tallow clay" to some im
pure Kaolins found near the surface in their localities, but 
these do not possess those distinctive physical characters so 
well known to all who have ever handled the true "TaHow 
Clays." 
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The "Tallow Clays" are found in layers from a few inches in 
thickness up to several feet (Geol. Survey of Missouri, '73-'74, 
p. 4 19, t. 439,) in lumps oUrom a few pounds in weight up to 
several hundred with calamine embedded in them, and in thin 
streaks in cavities in crystallized calamine. Many miners have 
told me that they usually find less Calamine in those shafts in 
which they find large bodies of "Tallow Clay," which observa
tion is confirmed by the experience of the Superintendent of 
the Granby mining company Sometimes Calamine is found in 
slabs with and without a banded structure as if it were a pseu
domorph after Tallow Clay. The following speCimens have 
been analyzed with the results given below: 

No. 1. A specimen from Granby, Mo., given me by Mr. 
John Kingston, slightly banded with layers of gray and buff 
tints. 

No.2. A grayish white layer from the mines of the Louis
ville Mining Company, at Aurora, Mo. 

NO.3. A buff colored layer from same piece as No.2. 

No. 1. NO.2. NO.3· 

Zinc oxide 64·53 58.27 63.0 5 
Iron oxide 0.07 0.05 1.97 
Alumina 0.92 2.15 1. 13 
Silica 27. 12 3142 25.88 
Water 7.36 8. I I 7.98 ---. 

roO.OO 100.00 100.00 

The undried specimens of Tallow Clay give off water in the 
closed tube; fuse on charcoal at about 3, always lightening up 
in color becoming white or ash gray; give the zinc coating 
when heated in the reducing flame with soda; and are com
pletely decomposed with gelatinization when heated with mod
erately concentrated hydrochloric ac'id. 

The following analyses represent their average composition. 
The white varieties which have given such high results are 
found only in thin streaks and in small amount in the darker 
colored varieties. 
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ANALYSES OF 
(Specimens 

No. Locality. Color as taken Color after dry- S. G. 
from the ground. ing in the air. 

1. Aurora - - - - - White ------- White - - -- 2.9 1 
2. " - - - -"'- " ------- " 2.92 
3· Near Peirce City " ------- " 2·95 
4· Granby - - - - - Gray ------- " 2.89 
5· Aurora o - - - - - Flesh colored - - - Light drab - 2·77 
6. " - - - - - " " " " 2.78 

7· N ear Peirce City - Cream - - - - - - YeIrowish - -
8. Aurora - - - - - - - Light brown - - Ash gray - - 2'47 

9·' 
10. 
II. 
12. 
13· 
14· 
IS· 
16. 

" - - - - - - - Yellowish browh - " " 
" " ., " 2·57 
" - - - ~ - - - Brown - - - - - - Chocolate - 2.99 

Granby - - - - - --" - - - Reddish brown 
N ear Peirce City - - " Pinkish yellow 
Aurora - - - - - - - " - - - - - -- Chocolate - - - 2.4 I 

" - - - - - - - - - - - Reddish brown - 2.72 
" - - - - - - - - - - - - - Brown - - 2.69. 

17· Near Peirce City .. Reddish brown .. yellow ...... 2.25 

18. Granby, ............. Red ...... Reddish brown.. ' .. . 
19· Near Peirce City., ... " ...... Pinkish ............ .. 

20. 

21. 

22. 
23· 
24· 
25· 
26. 
27· 
28. 
29· 
30. 
31. 
32 • 

Granby ...................... Pale yellow ........... . 
H ......................................... .. Light brown ...... ............... .. 
" ...................... Brown 
" ..................... White 

" 
" 

Brown 
Pale red 

H " 

. .. .. .. .. .. .. .. ~ ...... 

" ... : ..... ........ ......... " ............ Dark brown . ................... .. 
Auiora· ....... <. • • • • • . • . • • • • • Brown ........... " 

" .•••• c. • • • • • • . • • • . • . • Pink ........... . 
... '" ....... ~ ' ... ~ ........... ~ ... ' .. .. 
.. .. -, ................. , ..... ~ .. .. .. .... . 
.......................... ... '., ... ' ... 

" 
Brown 
White 

Loss at 
H 20 at low red 
IOOClC. heat, 

H2O 
mainly. 

4.0 3 3.92 

4. 14 4.00 

3.6 3 3.5 2 

4·37 4. 13 
6·33 8r93 
6·53 8·73 
___ ---"----"'I 

18.06. 
9.38 9. 22 

10.50 

9.62 
7.00 

12·50 

10·44 
9.5 0 

6·76 
10·49 
10.78 

8·40 
8.36 

10.38 
< 8.02 
8.19 

10.02 

9.70 

8·93 
9·93 

r------A..---., 
21.5 8 
20.15 

\ 
\ 
' .. ' , 

16.83 
12'66 
15.40 

17.98 
16·74 
16. I I 

16. I I 

14.7 1 

17.80 
18.30 

14.2 5 
16·73 
12.72 
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TALLOW CLAYS. 

thoroughly air-dried.) 

ZnO SiO~ AbOH Fe20., CaO Na2O+ Totals. 
K20 

54.06 35.29 1.64 none I.80 none ............. 100·74 
54.92 35.3 I I' 7 I " 0.12 ............. 100.20 
56 12 34.82 I.5 2 0.3 2 undet. . . .......... 99.92 
50.35 36.82 I. 85 0.01 I.93 traces ............. 99-46 
35.63 38.26 6.17 4.67 tr. undet. No P20r; 99·99 
36 .16 36.90 6.29 4.22 1.02 " " 99.84 

35.64 33.36 1 I.03 0.80 undo tracce P2 0" 99.89 
36 .38 36.59 4.92 1.89 1.77 none CO2 trace 100.14 

NOP205 
42.93 33.86 2·14 0.78 1.07 NoC02 99·77 
30.03 37·34 10.62 2.06 1.36 " 99-40 
28.56 43-49 5. 16 4.38 1.2 I " 100.17 

36 .98 31.94 3.0 5 4-46 2.3 I 0.8ro " 100.07 

34·33 34.21 7.9 1 4.89 0.02 none " 99'99 
31.72 39-45 6.44 2.08 1.48 " " 100.69 

32 .35 37. I I 3-44 9·54 1.06 traces " 99·95 
32 .7 2 36. I I 6.26 4.2 I 1.61 P2Oii .020 100·34 
34-40 37.66 3.88 3.36 0.01 none No P20 5 100.02 

traces of 

34.78 30.27 8.78 3.98 0.08 traces CO2&P20 5 99·47 
25.96 34·94 9.92 8·53 tr. P20 5.23 99·7£ 

~ 

34.83 35.0 7 14. 26 100·99 

39·53 37.60 9-40 99. 19 
38.23 38-43 8.67 IOo·73 
37. 12 34·37 10-43 99.90 

32.50 40.36 10.42 100.02 

32.34 42.08 9.64 100.17 

29·94 44.07 9.64 99·79 
41.47 36.00 7· ll 99. 26 

36. 12 35.20 9.98 99. 10 

31.54 37·37 12.89 IOO.IO 

37·39 34.67 14-37 100.68 

37.84 34·45 10.84 99. 86 

48 '93 35,94 2.40 99'99 
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The above complete analyses have been supplemented by de
terminations of zinc made by students in this Laboratory of 
other specimens and the results all tend to show that the 
"Tallow Clays" are uniformly quite high in Zinc oxide, the air
dried specimens having approximately the following average 
composition: 

Oxide of Zinc 
Silica 
Iron and Aluminium oxides 
Water and other matters 

34,57 
58.90 

9-41 
17. I 2 

100.0:> 

It is of interest, perhaps, to note that a similar clay has been 
found associated with Zinc ore from Southwest Virginia (sec 
No. 1144 London Chemical News), and in Spain, (see Dana's 
System of Min. p. 408). I have also been informed that simi
lar clays have been found with Calamine in Colorado but have 
not been able to verify the statement, From an article on the 
Zinc deposits of Lehigh, Pennsylvania, published in the Trans
actions of the American Institute of Mining Engineers, (p. 68, 
VoL I), I take the following: 

"A compact clay containing from 26.32 per cent. of Zinc, 
unctuous, and with an eminently conchoidal fracture is believed 
by Prof. Ripper to be a true mineral." 

These facts lead me to believe that the "Tallow Clays" are, 
or will be found with every deposit of Calamine throughout the 
world. 
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ON THE CONTINUOUS CONSTRUCTION OF THE 
ELLIPSE. 

By PROF. W. H. ECHOLS. 

If a circle rolls without slipping inside of a fixed circle of 
double the radius whose center is 0, then in the plane of the 
fixed circle the center of the rolling circle describes an equal 
circle whose center is 0, any point on the circumference of the 
rolling circle describes a straight line through 0, and any other 
point in the plane of the rolling circle describes an ellipse. 

This kinematical truth leads to the practical method of turn
ing ellipses, and also to valuable geometrical methods of draw
ing the curve. 
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I. Let C be a position of the center of the rolling circle 
and P a point moving with it describing an ellipse. Draw in 
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the plane of the moving circle and through its center C the se
cant PC cutting the circumference in A and B. The points A 
and B move in straight lines through 0 perpendicular to each 
other. From the nature of the curve these lines are known to 
be the axes whose semi-lengths are P A and P B. Thus the 
familiar method of drawing the curve when the axes are given. 

2. Mis th.e point of contact of the rolling circle with the 
base circle, it is therefore the instantaneous center about which 
all points in the plane of the rolling circle are rotating. Hence 
M P is normal to the path of P at P, and' therefore normal to 
the diameter conjugate to 0 P. Thus 0 F.is the direction of 
that diameter and 0 Q = PM is its semi-length; for P M X P F 
= PAX P B, being' secants to the rolling circle from P, and 
P F=POsinP 0 Q. Hence PA X P B=PO X QOsiPO Q 
and 0 Q must be the semi-diameter conjugate to 0 P. 

Given a pair of semi-conjugate diameters in position to draw 
the curve. From the extremity P of one of them draw P M 
normal to the other and equal to it in length, cutting it in F. 
As the line of constant length P M moves so that the fixed 
point F moves on the diameter 0 Q and the point M on the 
straight line M 0 through the center, the point P describes the 
ellipse. 

This is a simple and erlsy way of drawing the projections of 
circles. I have not seen this method given, nor do I know of 
its being used. * 

3. Minchin in his Uniplanar Kinematics gives a triangle, 
two of whose vertices move on the conjugate diameters while 
the third describes the ellipse. The proof there given is ana
lytical. There are really two such triaftgles, which are shown 
in the figure as R P F and R' P F. 

Rand F being points on the circumference of the moving 
circle, move on the diameters P 0 and Q 0 as P describes the 
ellipse. The triangle is determined as follows: P F is the 
distance of P from 0 Q and P R the distance of Q from 0 P. 
the angle at P is 90o--P 0 Q. Join R M, P R M is right angled 
at R and< PMR - <p 0 Q .. Hence .PR.,... P Msin PO Q. 

Alsoas·R,'anc;lFmove in Q.PandO Qrespectively, Ptraces 
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the curve and PR'=P R, also <F P R'=90o+ P 0 Q. 
What has gone before applies equally to the rolling circle 

system whose center is C', if the proper letters be accented. 
4. The figure shows that no triangle can move with a ver

tex on each a>.~is of an ellipse and the third vertex trace the 
curve, since the above triangles (3) degenerate into one straight 
line when the pair of conjugates become the axes. Also that 
no stmiglzt line can move with two of its fixed points on a pair 
of conjugates while a third fixed point on it traces the curve. 

). In general any secant cuts the circle in two points, the 
intenxpted portion of which may be taken for the base of a 
triangle whose extremities describe straight lines through 0 as 
the vertex at P describes the curve. If the secant passes 

'through C the ends of the base move in straight lines normal 
to each other, If the secant passes through P the triangle be
comes a straight line. 

Since C traces a circle, any straight line from C to a point 
on the circumference may be taken as the base of a triangle 
one end of which moves in the circular path of C, the other in 
a straight line through 0 while the vertex at P traces the el
lipse. This triangle may become either of the straight lines 
P B C or peA, or with the accents. 

Again Cluy secant P B C or peA moving so that C moves on 
the circle described by C, while B slides on 0 B, or A on 0 A, 
describes the ellipse with P. That is any vertex 0 of an iso
triangle 0 C B remaining fixed in position and the odd side 
o B in direction, then as B moves on 0 B every point on C B 
describes an ellipse. A Paucellier Motion attached to B then 
gives the linkage for describing ellipses without a sliding joint. 
These are all familiar motions in Kinematics. 

6. Any secant drawn to the circle (C) from P will have two 
segments, either of which is the length of a semi-diameter, the 
other segment is the distance of the tangent at the extremity 
of its conjugate from the center of the curve. 

Any two secants drawn from P to the extremities of a diam
eter ;:hrough C, are a pair of semi-conjugate diameters of the 
ellipse in length. The angle between them is the compliment 
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of the angle between these diameters in the ellipse. The an
gles which each makes with the axes of the curve are at once 
determined as in the figure. . 

7. This circle gives a number of easy constructions relat-
ing to the elli pse. 

If any two points A and B in a plane describe straight lines 
Ox and Oy respectively, any third point in the plane describes 
an ellipse which is at once dete.tmined by drawing the circle 
through 0, A and B. Either the diameters or a conjugate to 
o P can be drawn at once. 

Also a simple construction for drawing a pair of conjugate 
diameters which shall include a given angle, the equi-conjugate 
diameters, &c., &c. 

The figure also shows that the locus of a point on the nor
mal at a distance from the point of contact equal to the. semi
diameter conjugate to that through the point of contact is the 
concentric circle with radius a±b. 

Huntsville, Ala., July, I889. 

* At the time this paper was written I was under the impression that 
this construction was new. I had been using it for a long tim~ for 
drawing the projections of circles without going to the trouble of' first 
constructing the axes and had made rather a careful search among 
English works to see it if it could be found. Not being able to .find 
it even in Eagle's Constructive Geometry of Plane Curves {MacMillan 
188S}, the most elaborate thing of its kind I know of in English. I fi
nally wrote this paper with the pnrpose in view of plaCing before 
draughtsmen this very elegant and simple little way· of drawing the 
curve on· the conjugates. Its 'eXtreme simpliCity made me hesitate to 
put forth the claim of newness, as I felt sure it could only be through 
my own ignorance that I bad failed to find it in print. After some 
months hesitation I sent it to the Annal8 of Mathematio. for publica
tion, but fortunately discovered the author in time to withdraw the 
paper; 

The construction is due to Manheim and may be found, in his Ele
ments de la Geometrie Cinematique, page 164. In a foot note to the 
construction there given he says, ~'C'est en 1857, dans les NO'IJH)elle8 An· 
Ml6B ~ Ma.tkemiJti(jfUJ8, p. 188, que j'ai donne pour la premiere fois 
cette construction." While tbis remark applies to the construction of 

. the axes given a pair of conjugates, that construction in the text in~ 
cludes the above. 

The only apology I ean nQW make for presenting this construction 
here is it.s rarity or total ahsencefroln·English text-books. W.·H. E. 
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ON THE ESTABLISHMENT OF THE TRUE MERIDI
AN BY MEANS OF OBSERVA1'IONS ON THE SUN 

WITH THE ENGINEER'S SOLAR INSTRU
MENT. 

By GEO. R. DEAX. 

I. After a somewhat extended examination the writer has 
observed that all engineering text-books, which treat the sub
ject at all, give an inadequate exposition of the principles on 
which the use of the Engineer's Solar is based. All agree 
that the instrument should not be used near noon, and offer as 
the reason for such instruction, that the error in azimuth of the 
line of sight corresponding to an error in setting the Sun's de
clination, is greater at this time than at any other. While this 
is true, there is another and if possible more potent reason why 
the instrument should not be used near noon. For as will be 
shown in the sequel, should the latitude and declination be set 
off with theoretical exactness, the liability to error still exists 
and the possibility of establishing a false meridian is highly 
probable. 

2. The Solar:-The instrument consists (mathematically) of 
a vertical axis to which is hung a terrestrial line of sight capa
ble of motion in altitude and azimuth, and supplied with clamps 
for arresting each of these motions. 

Rigidly attached to the terrestrial line of sight, in the same 
vertical plane with it and normal to it, is a polar axis, about 
which revolves freely a celestial line of sight capable of being 
set at any angle with the polar axis. 

3. The principle underlying the use of the Solar:-If at any 
point of the Earth whose latitude is known, the instrument be 
planted, the vertical axis made vertical, the polar axis set at an 
angle with the horizon equai to the latitude of the place, and:the 
celestial line of sight set at an angle with the polar axis equal to 
the polar distance of the Sun at the instant of observation: 
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then, if the celestial line of sight be brought upon th e Sun (by 
rotating the instrument about its vertical axis and the celestial 
line of sight about the polar axis), the terrestrial line of sight 
must be in one of two vertical planes. One of these planes is 
the True Meridian, the other a False Meridian. Measuring azi
muths (for our present purpose) from the north point around 
through the East: the azimuth of the False Meridian will be 
twice the azimuth of the Sun. 

This is simply shown as follow~ : 
4. As the polar axis revolves about the vertical it generates 

the surface of a cone of revolution whose semi-vertical angle is 
the co-latitude of the place; therefore this surface passes 
through the Celestial Pole. If now the celestial line of sight 
be brought upon the Sun, the polar axis must be found in a 
cone of revolution whose axis is the celestial line of sight and 
whose semi-vertical angle is the polar distance of the Sun; 
therefore this surface passes through the Celestial Pole. These 
two cones having their vertices common, have two elements in 
common, one of which passes through the Celestial Pole. It 
is easy to see (from elementary geometry) that the vertical 
plane through the Sun bisects the diedral angle between the 
two common elements. Therefore the azimuth of the second 
element is twice that of the Sun. Fig. (2) represents the Ce
lestial Sphere projected in plan and elevation upon the Horizon 
and True Meridian respectively. The traces with it of the 
cones in which the polar axis is found, are projected horizon
tally in th(;' ellipse whose minor axis is in the plan of the celes
tialline of sight C' S', and the circle whose center is Z' and 
radius Z' P', respectively. They intersect in points P' and P' 
equidistant from C' S '. 

5. In the spherical triangles Z P Sand Z P' S (Fig. I), the 
three sides of the one are respectively equal to the three sides 
of the other; hence the triangles are either equal or symmet
rical, i. e., P' coincides with P, or the azimuth ofP' is twice 
that of S. 

Again; from the same figure, where the angles P ZS and P' 
Z S are A and A', respectively: 
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cos S P = cos S Z cos Z P + sin S Z sin Z P cos A ...... (I); 

cos S P =cos S Z cos Z P' + sin S Z sin Z pi cos (A-A') ... (2). 
Since S P = S P' and S P = Z P'; cos (A - A') = cos A and 

therefore A' = 0 or 2A. 

z 

z 

Flf~.II 

6. At sunrise and sunset or near these times, the celestial 
line of sight may be brought to bear upon the Sun while the 
polar axis and terrestrial line of sight are in a vertical piane 
quite near the True Meridian, which we call the False Meridian. 
There is no possibility of confounding the two, since, when the 
polar axis is in the False Meridian it points south. Therefore 
this case may be dismissed since the error of mistaking the me
ridian is provided against by merely a general knowledge of 
the points of the compass. When however the Sun is near the 
Meridian, the False Meridian approaches the True Meridian (and 
the polar axis points north) very nearly, coinciding with it ex
actly when the Sun is on the Meridian. 
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Hence when the Sun is nearly on the Meridian, it becomes 
i~possible to distinguish between the True and False Meridian 
even with the magnetic needle as a guide. The text-books 
guard against this mistake by instructing that the polar axis be 
set in the Meridian as nearl)' as may be by the needle and for
bidding the lIse of the instrument within one hour of noon. 
They all agree however in attributing the reason for this in
struction solely to the relatively great error in alignment due 
to any error in setting off the angles, when the instrument is 
used at this time. 

7. In "order to investigate the error in locating the Meridian 
when the instrument is used near noon, consider the Z P S tri
angle, and let A, (J, {J., Z and H, be the latitude of the place, the 
polar distance of the Sun, its altitude, azimuth, and hour angle 
respectively; then, 

sin 8 = sin (/. sin). + cos a cos). cos Z . . . . . (I). 

If this be differentiated, first considering (I. and). as constant, 
and then {J. and 6 as constant we get the following formulre, af
ter an easy reduction by' use of fundamental relations in the 
Z P S triangle: 

do 
dZ ~ -= - ~--,--

o cosAsinH 
(II), 

dZ.=- dA 
A cosi. tan H 

... (III). 

These are the formulre given in Johnson's Theory and Prac
tice of Surveying, for the errors in locating the Meridian due to 
an error in setting off declination and latitude, respectively. 

Tnese formulre are only approximately true when d (~, d)' and 
d Z are small, and they fail altogether when the Sun is about 
to transit or when H is small, since they make the error infi
nitely great whenever d (J or d A is finite. These formulre, and 
therefore any tables calculated by them give an entirely erron-
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cous idea of the Meridian error near noon. In point of fact, in 
order to get a clear conception of the lVIeridia:1 error we mllst 

go back to the finite difference equation :tse:r. a:lcl must ::lOt 
proceed to the limit until we are sure of getting the elesired ap
proximation, 

8 Consider a point P on the same alrnucant"r w:th i', and 
in the Z P' S triangle let the a'lgle S Z P' b::: /~', and side S P' 
be .;" : then we have 

C')5 ,j = sin '/. sia j, cns II. c')s j, cos Z, and 

C()S /';' --. sin '/ sin i. -1- ens '/. cos; cos Z', .. . (IV); 

or ens ri cos (i' -~:...:.:: cos (/. cos < (co,:; Z - cos Z'"); 

whence, if a --- IJ' . , Jrj ; Z Z' ::.= JZ ; 
.' (' I. J ') . 1 J' -- . '(7 I JZ' . 1 ;7 sm (J'- -~ I) sm:.f . -- cos 'I. cos cos J. SID /, -- ':T _) sm -~- _. /_ 

.... , .. , .... , .... , , .. , .. , . (V). 

If in th s equation we: pil.SS to the limit as Jrj and )Z be
come ell; and elZ we get equation II as above, but in passing to 
the limit in sin (Z -~. 6Z) we let 6Z go out in comparison 
with Z ... "hicb cannot be done when Z itself is infinitely small or 
zero, as is the case when the sun is on the lVlericlian. HeEce 

the derivative only gives illl ilpproximate formula when Z is 
large compared w:th t~z, wh:ch is usually the case. 

When the Sun is on the Meridian or Z is ;r, then the rneridi

ill1 error corresponding to the declination error is 

sin!.,)Z = isin(r;-}_:ljfsG~--.T~~rI 
~ "\1 -. -.. --.-- - ------

cos I/. cos) 
. . , . (VI\, 

This shows that if JrJ is negative /\ Z is imp')ssible, or that 
with the Sun on the Meridian ilnd a polar distance be set off 
greater than the true polar distance it is impossible to bring 
the celestial line of sight on the Sun. When Ji) has two equal 
finite values with opposite sign. Thus for i. = 40 ; if = IO 5 ; 

rl. = 35'; we have, if Jri =01', JZ = r 42' 54". 
To compute this error for a smilll hour angle we may use the 

formula=, 
,------- -.~--~ 

sin Z = --~--_:_- I sin S cos (S-I-II.) sin (S-rJ) cos (S+i.) , 
cos (I. cos I. " 
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., 2 I ." -S;-:--(~:-'-+ -)-:- --(-~S-:---;'-)-(S- , - j) • 
sm Z = ----------''---. sm sm:::. (I. sm -{J COS ,. , 

COS {J. COS A"\J 

where Sand S' are the half sum of the sides in the triangles 
Z P Sand Z P' S respectively, and where 

. , } 
(f. = arc- sin { sl11 011 sin (A + fJ) ; 

cos 

II being arc-tan (tan i; cos H). 
In the hour angle one minute of time is equivalent to 15 min

utes of arc. The errors in azimuth of line of sight Meridian 
due to an error of one minute of arc in declination. for i. = 40"" 
;J= I05", when the Sun is 10,20, 30, and 60 minutes m time, 
from the Meridian, h;:LVe been computed by the above formulre 
and are respectively, 

-H - om 10m 20m 30m 60m 2 111'S 

Z =0" 2° 55' 10" 5° 40' 3 Iff 8~ 49' 30" Ii' 2 I' 8" 32' 13 
.JZ = 1° 42' 54" 17' 58" I I' 40" 

, 
15" 5' 12" 2' 38' 9 

Johnson's Surveying gives as computed by (II): 

H=Offi 

.JZ = 00 

60m 2 111'S 

15 5' 03" 2' 37" 

These results show that the instrument can not be used any 
nearer noon than the text-books instruct, but the error is not 
indeterminate, and is not infinite at noon as the derivative 
might lead us to believe. 

8. To compute the error in azimuth due to an error in lati
tude, we write down as before, 

cos a = sin (I. sin). + cos (I. cos 2 cos Z. 

and cos a = sin a sin X + cosa cos X cos Z' : 

whence follows, since ). - X = tlA. etc.; 

2 tan a sin -! .dA cos (A --! O'}.) - cos}. cos Z - cos (). - .d}') cos Z', 

or tan a sin 11 .d)' = sin (Z - t.dZ) sin 11 11Z; 
since .d}. is always small compared with 2. 
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To get the error for the Sun on the Meridian, Z = 0; hence 

sin t dZ = ~ tan a sin t J i. ; 

from which .if Ji. is negative. or A' > A, it is impo~sible to bring 
the line of sight on the Sun. If Ji. is pO'litive and equal to or', 
then JZ = r O 9' 22/1 for (/. = 35 n • 

In order to compute these errors for other times than near 
noon, we must use 

sin Z' =---=---" I sin S' cos (S' + (I) sin (S' - ri) cos (S' + /) . 
cos (/. cos A '\I. 

The results agree with those given in Johnson's Surveying, 
computed by (III,) to within 20 minutes of noon. 

Thus the error in establishing the Meridian when the Sun is 
about to transit, due to any error in setting the declination or 
latitude is so great as to forbid the successful use of the instru
ment near this time, and which therefore excludes the danger 
of establishing the False Meridian. 

The above is an extract from a the~is on the Solar by the writer. 

EXERCISES. 

I. 

Two vertices A and B of a triangle ABC describe straight 
lines which meet at the angle If)~; show that the area of the 
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curve described in their pla!'.e by the vertex C is 

o being the area of the triangle ABC. 

2. 

[!'V. H. EeIlo!s.] 

In exercise I, find the whole length of the envelope of the 
side c. [ TV H. Eello/s. J 

3· 
Two parallel straight lines are distant apart d; it is required 

to unite them b) circular arcs which shall have between them 
a common tangent of length t. [Elmo C .. Harris.] 

4·* 
The angles of depression of two towns T and r, 11 miles 

apart, are observed from a balloon and found to be n:7'C-C{Jt a 
a11d ar::-co! cz', respectively; the balloon moves in a line whose 
azimuth wIth respect to the line joining: the two towns is arr
cos:}; upon arriving at a point kn0Nl1 to be 7ft miles (horizon
tally) from the first point of observation the angles of depres
sion of T and T' are now observed to be arc-cot band a7'C-C(J/ 

b' respectively. V\lhat was the height of the balloon at each 
station? . [C{'(). R. Dcmz.] 

5· 
Two straight lines 0 P and 0 Q are of lengths b' and d re

spectively. From P a perpendicular P 111 is drawn to 0 Q and 
equal to it, cutting it in N Show that the equation to the lo
cus of P, as the point N moves on 0 Q and the point M on 
o l~f, referred to 0 Q and 0 P as axes of x andy respectively, is 

[W H. EdtoZs. ] 

6. 

Regarding the portion of the tangent to the hyperbola inter
cepted by the asymptotes as one diagonal of a square, what are 
the loci of the extremities of its other'diagonal? [W H. Echols.] 

*A generalization of an exel'cise in Snowhall's Trigonometry. 



ERRATA. 

Page 9, Hne 7 from bottom, for d1 read d1• 

. .siti;dif' . si if' dif' 
Pager8,line6,f01 /' read / .' 

l 1m if' V 211t if' 

Page 19, line ro, for co (-t 1n S2 ds read co (-t 1ft S2) ds. 

Page 22, line 2 I, dele A. C. 

Page 23, line 7, dele A. C. 

Page 32, line 7, for"what is known as a member of" read "a 
member of what is known as." 

Page40, line 4 from bottom, for Ripper read Roepper. 
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