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In Arts. 253-261 and elsewhere in the classic treatise of 
Salmon on Conic Sectio1lS, as well as in other works of like 
scope, will be found a number of analytic properties of the' 
binary quadric, or General Equation of second degree in 
Cartesian resp. trilinear coordinates, interpreted geometri
cally in terms of irnaginary points and right lines, whether in 
finity or at infinity. The formal correctness of these interpre
tations is, of course, not to be questioned, but it is equally 
manifest that the visible geometric depiction is altogether 
inadequate to express the relations under consideration. 

By use of the quadrantal versor i as an operator, to denote 
the turning of an ordinate y through a right angle into pl"rpen
dicularity to the plane of X Y. Mr. Carr,in his Synopsis of 
Pure Mathematics. enlarges measurably the range of geometric 
representation. Thus the Equation 

? " .) x- . )'- ""-.::~ a-. 

for 

is depicted by a circle of radius a about the origin; the axes 
being rectangular. For .t' lying outside of these extremes the 

valu'e of y is il,,\,2 a:x: and the geometric picture is according

ly an equiaxal Hyperbola having the same parameter and real 
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axis as the circle, but in a plane normal to X Y along X. If 
now, for convenience, this Hyperbola be rotated about X into 
the original plane X Y, whereby the foot of the ordinate y 
will not be changed, in this new position it is called, following 
Poncelet, sltpplementm:l' to the circle as priluipal. In general 
the two curves 

are principal and supp.lementary. Mani festly, supplementaries 
to the same principal will vary with the choice of conjugate 
diameters for coordinate axes. 

With help of the supplementary curve, many puzzling pro
perties of <onics, such as 

All circles meet in the same two imaginary points at 
infinity; 

Concentric circles touch in four imaginary points at infinity; 
All confocal conics have four common tangents imaginary 

and determining four foci, two real, two imaginary, as two 
pairs of their opposite intersections; . 
and the like, may now be interpreted geometrically and vIsibly. 

Two reflections, however, suggest themselves. By turning 
the perpendicular curve into the plane X Y and then using its 
properties to supplement the properties of the principal, we 
seem really to surrender the problem of interpreting our 
analytic properties through the circle and to say in effect. "We 
can not understand these of the visible circle, but we may un
derstand them of the visible hyperbola." Accordingly, the 
problem of rendering these properties, when affirmed of the 
circle, intelligible to intuition, seems scarcely to have been 
met and solved but rather ~vaded. The burden which proved 
too heavy for the principal shoulder has been shifted to 
the supplementary one. Thus, when asked to s;i}rinW:'l!la.'t 
sense the circle 
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has a pair of imaginary asymptotes 

we make answer that the supplementary hyperbola 

A·2+y2= a2 

has a pair of real ones 
.) ') X"-y-= o. 

The answer is indeed quite correct, but not quite relevant. 

3 

Again, in dealing with extra-real values of the coordinates, 
either of two ways seems logically open: to admit all or to ad
mit none. Choosing the latter, we must say of the Asymptotes 

X2+y2=0 

simply that they arc /lot, no finite real values satisfying their 
Equation; this latter is accordingly a mere analytic symbolism 
void of geometric content. This answer is entirely correct 
and consistent, involving no internal contradiction. So with 
respect to imaginary points of intersection of conics, we may 
say curtly there art' no s?tc/z poillts and so end the discussion. 
But if we choose the other path and admit any imaginary 
values to equal rights with real ones, then we must admit all, 
"for there is no difference." Any reason which legitimates 
the value £ for y in ;\,2+y2= I fuust legitimate the same value 
for ..t' and the general value a+ i b for both. The fact is, so 
soon as the ditensive unit i is r-:cognized at;111 the domain of 
number becomes a manift:ld doubly extended and is no longer 
to be pictured by a continuity of points along a single axis as 
X or Y, but requires a surface, as a plane, for its complete de
piction. Very naturally, then, the geometric interpretation of 
the Equation in ;t' and y, where each may be of the form a+i b, 
as a curve in the plane X Y, while quoad perfect, is yet incom
plete, for there is no place on either axis for the geometric 



4 s:vrnu:. IMAGINAI:UES IN ANALYTIC GEOMETRY. 

picture of an imaginary value, and hence no place in their 
plane for the picture of a pair of such values. Evidently, then, 
if we would interpret the Equation completely, we must con
struct the values of the coordinates completely: we must as
sume two planes, instead of two axes, of .\' and y. In each of 
these planes we assume two axes at right angles, the one of 
pure reals, the other of pure imaginaries. For convenience, 
suppose the planes perpendicular to each other, then in gener
al we shall have fo~r mutually perpendicular right lines, which 
are possible only in at least four-fold space. Such a space, 
though perfectly reasonable, is not imaginable, our intuition 
reaching only to three dimensions. Our equation constructed 
in this space would yield a solid as a border between two 
four-fold extent, and while amenable to analytic treatment 
would still defy envisagement as effectually 
as did our imaginary elements in the original plane. 
However, there is nothing to prevent our assuming two axes 
of reals at right angles, and a third axis normal to their plan e 
at their intersection as the common a.\'is of pure imaginaries. 
If this be -named the Z-axis. then the whole domain of value 
of x will be geometrically the X Z-plane, and of y, the 
Y Z-plane. Now put 

.';=1I+i u' and Y='71+~' 11' ; 
then these two points (If, z/), Vu, ,/), in X Z and Y Z, are two 
opposite vf'rtices of a parallelogram, of which the origin and 
the point (x, y) are the other pair of vertices. The rectangular 
coordinates of this point (x, y) arc plainly u, 'ZI, ,/ + ,/, or U. 71, Z, 

all of which are always real. To any pair (x, y) corresponds a 
triplet (u, 1'. z); accordingly the complete depiction of the 
equation in x and y, when complex values are admitted, will be 
the perfect depiction of the corresponding equation in u, v, z 
when only real values are admitted. This latter will of course 
be a surface in the space of ?t, ZI, Z. It remains to transform 
the Equation in X,)' into an equation in 71, 7.1, Z. 
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The General 

\i:her:cc 

and 

of first tlegree in.\" and y is 

JH)'+7i",,- 0; 

I u' m 'Z';· II 0, 

/ 1/ -,- Iii ,.' c,", 0 

( I ) 

(2 ) 

(3) 

(4) 

Equation (3). independent of :l, is that of a plane parallel to Z, 
its trace on the plane U V being the right line 

IN' HZ {'-i'll ,ce.: O .. 

Equation (41 does not limit in any way the total locus of U). 
but dcclart~s bow the ::: of 'each point of the locus is set 
together out of Ii' and zi. liere the constants I. 111., 1Z ·have heen 
supposed real, as is uniformly done in discussions of this equa
tion. But that supposition is by no means a necessary one. 
H we attribute to them the most general values, 

i?-' i a', iJ-;i h', c -i c', 

then result the eq uations 

II' U .. b' " ~ / : a u' . b 'Z" 0 

It' " .,0' O. 

wl,1ence, eliminating If' and;,', we have 

a 7/' T " , ~-·-~-a'" --b', 
, /' 

, 
b a N---' (1 '£.I t' fl, , 0, or 

Z, ----I, -'J, 

b":'P -d b')</+(a' b-ab'):; 
·j<1c·-bc; a'c'-· .. , 

equation of a not,itt perpendicular 
origi!lal pialle U .Examples such oblique . 
hereafter ptesentthemselvesl Omitting at this point 

also, 

0, 

to the 
win 

further 
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discussion of this equation, let us pass to Equations of second 
degree. Of these the simplest is that of the circle about the 
origin, 

Or 

wheace 

and 

2") ") x T)'- .. ;;:::a-. 

(u+ i u') 2 +(v+i 1/) 2= a 2; 

112 +'il2_(U'2 +-v' 2)= a 2 , 

u "'-ttl v',=o. 

From (7) and u'+v'=2' there result 

, UZ , l/ ;:. 
',Jz:.::: __ , U 0.'-'-"-'-'" 

U-1' U--'V 

whence, on substitution in (6) and reduction, 

(U~+V2) (u-z,?-z2]-a 2(u- zl) 2~:;:;; 0, 

a surface of fourth degree. 

(5) 
(6) 

(j) 

To get a clearer idea of this quartic let us introduce polar 
coordinates by the relations 

U:= ,o~, ,lc= P (~I ' 

where!! and 19,/ stand for cosine and sine of 8, the inclination of 
p from U-axis. Then (9) becomes, on rejecting p2, 

(I 0) 

Here (!!-8t)2 is a pure number positive and constant for 8 
constant; call it k 2 ; then, taking p and z as coordinates of the 
curve of section of the surface with the plane through Z sloped 
t9 to U, we have, as its rectangular equation, 

(I I) 

an Hyperbola, or, for varying 19, a family of Hyperbolas. The 
parameter of this fami~y is k 2; the real axes are all 2 a and 
form the pencil of diameters of the circle 

u l +f!~= a~; 
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for /}:= a the conjugate axis is 2a, the hyperbola is equilateral; 
as (~ increases to 1-;:- the conjugate axis shrinks to 0, the hy
perbola flattens to a doubly laid right line bisecting outside of 
the circle the angle U 0 V: as IY goes on increasing to t;:-, k2 

passes through the same system of values, yielding the same 
system of hyperbolas, in opposite order; for !J increasing to 
t:;:-, k2 rises to its maximum, 2, thence for !J increasing to 11: 

it once more sinks through opposite stages to its original 
value, I. Herewith the circuit of its values is complete and 
is merely repeated as /J passes from :;:- to 21':. Accordingly, as 
a plane turns about z it cuts the surface continually in an Hy
perbola, with vertex on the circle 

with constant real axis 2a, and with conjugate axis ranging 

continuously from 0 for d= 1-" or t;:- to 2a}/ '2 for t?=~1I: or 
t". The surface is symmetric with respect to two planes bi
secting the angles of the real axes, U and V, as becomes an
alytically clear on turning the axes through an angle, -t1l:;it 
consists of two halves compendent along the inner bisector. 
zt= 'l!. 

Now suppose a= 0; the circle reduces to the point-circle 

~+y~=o, 

which is also the pair of imaginary Asymptotes 

(x+iy)(;\·-iy)= o. 

But a= a reduces our equation (9) to 

(12 ) 

Of these the first is pictured completely by the origin, iince N 

and v are expressly real, the second breaks up into the two 

disjunctive equations 

U--l/-$= 0 a.nd u-t/+z=o. 



8. SM!'l'H. ' II\IAGll\AH.II<:S IX A!\ALYTIC GF'JMKl'J{\'. 

These'arc'depicted by two planes meeting on the right line 
U-'ZJ ' 0, bisecting the coordinate angle U 0 V; the first also 
bisects the anJ'Tk V 0 Z; i. c., the planes bist'ct the c,-,,:,r,Lnatc 

<> 

angle U 0 V of the original axes and arc iJlcli!1ed, c,!ch ,;t all 

angle whose tangent is 2, to the plane of thus!.: axc;. Ajsu, 
the 'plane turning about ;" cuts this pair of planes in. the curve 

(r 4) 

z'. e., in the pair of right lines 

k ,o-z:=:= ° and k p+ ::;",c 0. 

But tHese right lines are plainly the Asymptotes to the section 
of the surface made by the rotating plane, namely, to the Hy
perbola 

'- I6) 

Hence we see that the loclIs 

, .. ..;. 

, isgenJ..t.inely arid completely asymptotic to the locus 

,t '.. ~'. • ~. 

": !, 

; ev<!~y:.rcctilinear radial section of the first being asymptotic to 
,t~e GOolll'Csponding hyperbolic section of the second. 

Now change the sign of a2; then results the purely imagin
_ ary -circle 

Its complete spatial depiction is obtained at once by changi ng 
the sign of a2 in the foregoing reasoning; the, asymptotic 
J>t~~es are unaffected; while all the 'hype~bolas pass, over ~nto 

.': ' t ,4 , ',. ", ~ . . . • , ' " 
~h~ir conjugates, 'Thus the, imaginary cirele stands to the real 
~1e-'j notoruy: analyticdy but aloo visually." precisely as the 
~oojuk.t~ hyperb~ st.mi$toitspnm.try, tlieone being quite 

i ~ l." " , 
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as "real" as the other, and both having the common real asym
ptotic planes 

,7t,2+y2=0. 

The complete spatial depiction of the real and (so-called) im
aginary ellipses, 

,;,(2 y2 

a2+-b2=±I, 

is now easily apparent. It suffices to supplace y with ~ y m 
a 

in the foregoing. The general relations remain undisturbed. 

Let us now pass to the rectangular hyperbola, 

x 2-y2=a2 P7) 

Proceeding as in case of the circle we obtain 

(u2_v2) [(U+V?+Z2] -a2(21+lI)2= 0, (18) 

or 

an Ellipse in the plane through Z turned I~ from U, with center 

at origin, one axis 2a/Vt~2-/j,2, the other 2a(!!.+ lJ,)/l/~2_I~f"}' 
For iJ= 0 this ellipse be carnes a circle with diameter 2a; as I~ 

increases both axes increase, the second the faster, which is 
therefore the axis. major, until for 1~=tiI' both become infinite. 
For if ranging from tiI' to tiI' the sections are strictly imaginary 
ellipses, since both p and z are expressly real; z'. e., no part 
of the real surface lies in this quadrantal region. As r'f in
creases from tiI' to iI', the s.ection, once more real, shrinks from 
an infinite ellipse to the initial circle, radius a; and herewith 
the circuit of values is complete, to be retraced as I~ ranges 
from iI' t02iI'. The minor axes of all these real elliptic sections 
are the primary diameters of the hyperbola under considera
tion. 'The Asymptotes 

Z2_y 2= 0 =(x-y) (x+y) 
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are two planes through Z bisecting outerly and innerly the 
original coordinate angles and touching the surface at infinity 
all around along the infinite ellipse. 

Now change the sign of a 2 ; the hyperbola passes over into 
its conjugate 

all the elliptic sections which were real for a 2 , namely, all 
for I~ ranging from -tiT to -+-!-rr, now become imaginary, 
while all which were imaginary, namely, for H ranging from 
-}7i." to ~;r, now become real; and the Asymptotes remain the 
same. 

It is hardly necessary to detain the reader with further ex
emplifications. It seems entirely evident that the so-called 
imaginary points, lines, circles, ellipses, yea, curves and pro
perties in general, are no longer imaginary in the lNCUS tZ nOll 

IztCelldo sense of unimaginable, but that they exist for the 
spatial imagination altogether as genuinely as any of the rcaJs 
of Analytic Geometry. 

Further discussion is reserved for the presen t. 
Columhia, ;VIo., Aug. 11th, 1890' 
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OUR BELIEF IN AXIOMS, AND THE NEW SPACES. 

By DR. GEORGE BRUCE HALSTED, UXIVERSITY OF TEXAS. 

"Prove all things, hold fast that which is good," does not 
mean demonstrate everything. From nothing assumed, noth
ing can be proved. "Geometry without axioms," was a book 
which went through several editions, and still has historicai 
value. But now a volume with such a title would, without 
opening it, be set down as simply the work of a paradoxer. 

The set of axioms far the most influential in the intellectual 
history of the world was put together in Egypt: but really it 
owed nothing to the Egyptian race, drew nothing from the 
boasted lore of Egypt's priests. 

The Papyrus of the Rhind, belonging to the British Museum, 
but given to the world by the erudition of a German 
Egyptologist, Eisenlohr, and a German historian of mathema
tics, Cantor, gives us more knowledge of the state of mathe
matics in ancient Egypt than all else previously accessible to 
the modern world. Its whole testimony confirms with over
whelming force the position that Geometry as a science, strict 
and self-conscious deductive reasoning, was created by the 
subtle intellect of the same race whose bloom in art still over
awes us in the Venus of Milo, the Apollo Belvidere, the La
ocoon. 

In a geometry occur the most noted set of axioms, the 
geometry of Euclid, a pure Greek professor at the University 
of Alexandria. 

Not only at its very birth did this typical product of the 
Greek genius assume sway as ruler in the pure sciences, not 
only does its first effloresence carry us through the splendid 
days of Theon and Hypatia, but unlike the latter, fanatics can-
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not murder it; that dismal flood, the dark ages, cannot drown 
it. Like the ph~nix of its native Egypt, it rises with the new 
birth of culture. An Anglo-Silxon, Adelard of Bath, finds it 
clothed in Arabic vestments in the land of the Alhambra. Then 
clothed in Latin, it and the new-born printing press confer 
honor on each other. Finally back again in its original Greek, 
it is published first in Queenly Venice, then in stately Oxford, 
since then everywhere. The latest edition in Greek is just is
suing from Leipsic's learned presses. 

How the first translation into our cut-and-thrust, survival-of
the-fittest English was made from the Greek and Latin by 
Henricus Billingsly, Lord Mayor of London.. and published 
with a preface by J onh Dee the Magician, may bestudied in ~he 
Library of our own Princeton College where they have, by 
some strange chance, Billingsly's own copy of the Latin version 
of Commandine bound with the Editio Princeps in Greek 
and enriched with his autograph emendations. Even to-day 
in the vast system of examinations set by Cambridge, Oxford, 
and the British government, no proof will be accepted which 
infringes Euclid's order, a sequence founded upon his set of 
axioms. 

The American ideal is success. In twenty years the Ameri
can maker expects to be improved upon, superseded. The 
Greek ideal was perfection. The Greek Epic and Lyric poets, 
the Greek sculptors, remain unmatched. The axioms of the 
Greek geometer remained unquestioned for twenty centuries. 

How and where doubt came to look toward them is of no 
ordinary interest, for this doubt was epoch making in the his
tory of mind. 

Among Euclid's axioms was one differing from the others in 
prolixity, whose place fluctuates in the manuscripts, and which 
is not used in Euclid's first twenty-seven propositions. More
over it is only then brought in to prove the inverse of one of 
these already demonstrated. 



HALSTED. AXIOMS AND NEW SPACES. 

All this suggested, at Europe's renaissance, not a doubt of 
the axiom, but the possibility of getting along without it, of 
deducting it from the other axioms and the twenty-seven prop
ositions already proved. Euclid demonstrates things more 
axiomatic by far. He proves what every dog knows, that any 
two sides of a triangle are together greater than the third. 
Yet when he has perfectly proved that lines making with a 
transversal equal alternate angles are parallel, in order to prove 
the inverse, that parallels cut by a transversal make equal al
ternate angles, he brings in the unwieldy postulate or axiom; 

"If a straight line meet two straight lines, so as to make the 
two interior angles on the same side of it taken together less 
than two right angles, these straight lines, being continually 
produced, shall at length meet on that side on which arc the 
angles which are less than two right angles." 

Do you wonder that succeeding geometers wished by de
monstration to push this unwieldy thing from the set of funda
mental axioms. 

Numerous and desperate were the attempts to deduce it from 
reasonings about the nature of the straight line and plane an
gle. In the "Encyclopcedie der Wissenschaften und Kiinste; 
Von Ersch und Gruber;" Leipzig, I838; under "Parallel," 
Sohncke says that in mathematics there is nothing over which 
so much has been spoken, written, and striven, as over the 
theory of parallels, and all, so far, (up to his time) without 
reacJ..1ing a definite result and decision. 

Some acknowledged defeat by taking a new definition of par
allels, as for example the stupid one, "Parallel lines are every
where equally distant," still given on page 33 of Schuyler's 
Geometry, which that author, like many of his unfortunate pro
totypes, then attempts to identify with Euclid's definition by 
pseudo-reasoning which tacitly assumes Euclid's postulate, e. g. 
he says p. 35; "For, if not parallel, they are not everywhere 
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equally distant; and since they lie in the same plane, must ap
proach when produced one way or the other; and since straight 
lines continue in the same direction, must continue to approach 
if produced farther; and if sufficiently produced, must meet." 
This is nothing but Euclid's assumption, diseased and contam
inated by the introduction of the indefinite term "direction." 

How much better to have followed the third class ·of his 
predecessors who honestly assume a new axiom differing from 
Euclid's in form if not in essence. Of these the best is that 
called Playfairs; "Two lines which intersect cannot both be 
parallel to the same line." 

The German article mentioned is followed by a carefully 
prepared list of ninety-two authors on the subject. In Eng
lish an account of like attempts was given by Perro net Thomp
son, Cambridge, I833, and is brought up to date in the 
charming volume, "Euclid and his Modern Rivals," by C. L. 
1 )odgson, late Mathematical Lecturer of Christ Church, Ox
ford. 

All this shows how ready the world was for the extraordi
miry flaming-forth of genius from different parts of the world 
which was at once to overturn, explain, and remake not only 
all this subject but as consequence all philosophy, all ken .. lol'e. 
As was the case with the discovery of the Conservation of 
Energy. the independent irruptions of genius, whether in Rus
sia, Hungary, Germany or even Canada gave everywhere the 
same results. 

At first these results were not fully understood even by the 
brightest intellect. Thirty years after the publication of the 
book he mentions, we see the brilliant Clifford writing from 
Trinity College, Cambridge, April 2, I870, "Several new ideas 
have come to me lately: First I have procured Lobatchewsky, 
'E'tudes Geom~triques sur 1a Theorie des Parallels' - a 
small tract of which Gauss, therein quoted, says: L' auteur a 
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traite la matiere en main de maitre et avec Ie veritable esprit 
geometrique. ] e crois devoir appeler votre attention sur ce 
li~re, dont la lecture ne pent manquer de vous causer Ie plus 
vifplaisir'. Then says Clifford: "It is quite simple, merely 
Enclid without the vicious assumption, but the way the things 
come out of one another is quite lovely." 

The first axiom doubted is called a "vicious assumption," 
soon no man sees more clearly than Clifford that all are as
sumptions and none vicious. He had been reading the trans
lation by Houel, published in 1866, of a little book of 61 
pages published in 1840 in Berlin under the title Geometrische 
Untersuchungen zur Theorie der Parallellinien by a Russian, 
Nicolaus Ivanovitch Lobatchewsky, (1793-1856), the first 
public expression of wh.ose discoveries, however, dates back to 
a discourse at Kasan on February 12,1826. 

Under this commonplace title who would have suspected 
the discovery of a new space in which to hold our universe and 
ourselves. 

A new kind of universal space; the idea is a hard one. To 
name it, all the space in which we think the world and stars 
live and move and have their being was ceded to Euclid as his 
by right of pre-emption, description and occupancy; then the 
new space and its quick-following fellows could be called Non
Euclidean. 

Gauss in a letter to Schumacher dated Nov. 28, 1846, men
tions that as far back as 1892 he had started on this path to a 
new universe. Again he says: "La Geometrie non-Euc1i
dienne ne renferme en elle rien de contradictoire, quoique, a 
premiere vue, beaucoup de ses resultats aient l'air de para
doxes. Ces contradictions apparents doivent etre regardees 
comme l'effet d'une illusion, due a l'habitude que nous avons 
prise de bonne heure de considerer la geometrie Euclidienne 
comme rigourous." 
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But here we see in the last word the same imperfection of 
view as in Clifford's letter. The perception has not yet ~om~ 
that though the non-Euclidean geometry is rigorous, Euclid is 
not one whit less so. 

A clearer idea here had already come to the former room
mate of Gauss at Gottingen, the Hungarian Wolfgang Bolyai. 
His principal work, published by subscription, has the follow
ing title: 

Tentamen Juventutem studiosam in elementa Matheseos 
purae, elementaris ac sublimioris, methodo intuitiva, evidentique 
huic propria, intrr)ducendi. Tomus Primus, r832; Secundus, 
1833. 80. Maros-Vasarhelyini. 

In the first volume with special numbering, appeared the 
celebrated Appendix of his son Johann Bolyai with the follow
ing title: 

Ap., scientiam spatii absolute 'l!eram exhibens: a veritate aut 
falsitate Axiomatis XI Euclidei (a priori haud unquam 
decidenda) independentem. Auctore J ohanne Bolyai de 
eadem, Geometrarum in Exercitu Caesareo Regio Austriaco 
Castrensium Captaneo. Maros-Vasarhely., 1832. (26 pages 
of text). 

This marvellous Appendix has been translated into French, 
Italian and German. 

In the title of Wolfgang Bolyai's last work, the only one he 
composed in German, (88 pages of text, 1851,) occurs the fol
lowing: 

"Und da die Frage, ob zwei '(Jon der drittctz gesclmittetlC 
Geraden 'Wentz die Summa der inneren JiVinkel lliclzt=2R, siclz 
sehneidetz oder nieht.'?, niemand auf der Erde ohne ein Axiom 
(wie Euclid das XI) aufzustelle'n, beantworten wird; die davon 
unabh<engige Geometrie abzusondern, und eine auf die Ja 
Antwort, andere auf das Nein so zu bauen, dass die Formeln 
der letzen auf ein Wink aueh in der ersten gultig seien." 
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The author mentions Lobatchewsky's Geometrische Unter
suchungen, Berlin, 1840, and compares it with the work of his 
son Johann Bolyai, "an sujet duquel il dit: 'Quelques ex
emplaires de l'onvrage publie ici ont ete envoyes it cette 
epoque it Vienne, a Berlin, a Gottingen. De Goettingen 
Ie geant mathematique, [Gauss] qui du sommet des hauteurs 
embrasse du meme regard les astres et la profondeur des 
abimes, a ecrit qu'il etait ravi de voir execute Ie travail qu'il 
avait commence pour Ie Iaisser apn~s lui dans ses papiers.' " 

Yet that which Bolyai and Gauss, a mathematician never 
surpassed iil power, see that no man can ever do, our Ameri
can Schuyler, in the density of his ignorance, thinks that he 
has easily done. 

In fact this first of the Non-Euclidean geometries accepts 
all of Euclid's axioms but the last, which it flatly denies and 
replaces by its contradictory, that the sum of the angles made 
on the same side of a transversal by two lines may be less than 
a straight angle without the lines meeting. A perfectly con
sistent and elegant geometry then follows, in which the sum of 
the angles of a triangle is always less than a straight angle, and 
not every triangle has its vertices con cyclic. 

Gauss himself never published aught upon this fascinating 
subject, but when the most extraordinary pupil of his long 
teaching life came to read his inaugural dissertation before the 
Philosophical Faculty of the University of Gottingen, from the 
three themes submitted it was the choice of Gauss which fixed 
upon the one "Ueber die Hypothesen welche der Geometrie 
zu Grunde liegen." Gauss was then recognized as the most 
powerful mathematician in the world. 

I wonder if he saw that here his pupil was already beyond 
him, when in his sixth sentence Riemann says, "therefore space 
is only a special case of a three-fold extensive magnitude," and 
continues: "From this, however, it follows of necessity, that 
the propositions of geometry cannot be deduced from general 
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magnitude-ideas, but that those peculiarities through which 
space distinguishes itself from other thinkable three-fold ex
tended magnitudes can only be gotten from experience. 
Hence arises the problem, to find the simplest facts from 
which the metrical relations of space are determinable-a prob
lem which from the nature of the thing is not fully determi
nate; for there may be obtained several systems of simple facts 
which suffice to determine the metrics of space; that of Euclid 
as weightyest is for the present aim made fundamental. These 
facts are, as all facts, not necessary, but only of empirical cer
tainty; they are hypotheses. Therefore one can investigate 
their probability, which, within the limits of observation, of 
course is very great and after this judge of the allowability of 
of their extension beyond the bounds of observation, as well 
on the side of the immeasurably great as on the side of the 
immeasurably small." 

Riemann extends the idea of curvature to spaces of three 
and more dimensions. The curvature of the sphere is constant 
and positive, and on it figures can freely move without defor
mation. The curvature of the plane is constant and zero, and 
on it figures slide without stretching. The curvature of the 
two-dimentional space of Lobatchewsky and Bolyai completes 
the group, being constant and negative, and in it figures can 
move without stretching or squeezing. As thus corresponding 
to the sphere it is called the pseudo-sphere. 

In the space in which we live, we suppose we can move 
without deformation. It would then, according to Riemann, 
be a special case of a space of constant curvature. We pre
sume its curvature nulL It would then lie between the sphere 
and pseudo-sphere. At once the supposed fact that our space 
does not interfere to squeeze us or stretch us whcn we move, 
is envisaged as a peculiar property of our space. But is it not 
absurd to speak of space as interfering with anything? If you 
think so, take a knife and a raw potato, and try to cut it into 
a· seven-edged solid. 
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Farther on in this astonishing discourse comes the epoch
making idea, that though space be unbounded, it is not there
fore infinitely great. Riemann says: "In the extension of the 
space-construction to the immeasurably great, the unbounded 
is to be distinguished from the infinite; the first pertains to the 
relations of extension, the latter to the size-relations. 

That our space is an unbounded three-fold extensive man i
foldness, is an hypothesis, which is applied in each apprehen
sion of the outer world, according to which, in each moment, 
the domain of actual perception is filled out, and the possible 
places of a sought object constructed, and which in these ap
plications is continually confirmed. The unboundedness of 
space possesses therefore a greater empirical centainty than 
any outer experience. From this however the Infinity in no 
way follows. Rather would space, if one presumes bodies in
dependent of place, that is ascribes to it a constant curvature, 
necessarily be finite so soon as this curvature had even so small 
a positive value. One would, by extending the beginnings of 
the geodesics lieing in a surface-element, obtain an unbounded 
surface with constant positive curvature, therefore a surface 
which in a homaloidal three-fold extensive manifoldness would 
take the form of a sphere, and so is finite." 
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THE VOLUME OF THE PRISM OlD AND THE 
CYLINDROID. 

By PROF. W. H. ECHOLS, ROLLA, Mo. 

In estimating the volume of earth work in the construction 
of Lines of Communication, a particular solid has occurred so 
frequently that engineers have given it a specific name; the 
Prismoid. 

Whether the word was used to designate a definite geomet
rical solid prior to its adaption by engineers for that purpose, 
I have been unable to discover. The solid has been an ex
tremely interesting one to engineers and much has been writ
ten by them upon the subject of its volume. No small subject 
connected with the profession has probably received so much 
labor and attention as this, in the direction of facilitating the 
computation of the volumes of these earthwork solids. The 
impracticability of an exact result so far as designing a mathe
matical surface which should coincide with the natural surface 
of the terrain was early recognized, and all efforts in dealing 
with the solid have been in the direction I)f offering approxi
mate methods of computation, which yield results, the errors 
of which lie well within the limits which good practice demands. 

In the sense of facilitating the computation of earthwork 
solids it is not the writer's intention to write in the present pa
per anything of it practical nature upon the subject chosen, but 
rather to discuss it from a purely geometrical point of view, 
believing, however, that such a discu:.sion will contain matter 
which is not uninteresting to engineers, and which rtt the same 
time will be of practical benefit to them, insomuch as it will 
make more clear the advantages of the best methods now em
ployed ill practice for approximating to the volumes. 
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As to the practical feature of numerically computing the 
earthwork solids, that subject was shelved some fourteen years 
ago when Mr. Wellington and Prof. Davis published their 
works on Railway Earthwork*. It is because of a notice in 
the Engineering News of date, May 24, 1890, given to the 
second edition of the latter work, in which the Editor remarks 
"Weare astonished that the author should be so ill-read in the 
literature of his subject as to state in his preface: 'The result 
of the pn·smoidal rule isfor tlte first time obtained by a simple 
correction, without calculating the mid-section of these trouble
some solids.' By referring to p. 36 of Estimates of Railway 
Earthwork, by A. M. Wellington, published in 1874, he will 
find such corrections fully explained; and this was not the 
first.", that this paper was undertaken, the connection ap
pearing in the sequel. 

Both of these gentlemen base their methods of computc:tion 
upon the same formula which is obtained by each in the same 
way. The final result reached is the method now employed in 
practice which in a few words may be expressed as foHows: 
The mean area of the engineering prismoid is the average of 
its end areas, corrected when necessary. This correction is de
termined in each case, by computing the volume for three-level 
sections by the so-called prismoidal formula, then by the aver
age of end-areas, the difference being the desired correction. 

One in looking through engineering works cannot fail to be 
struck with the variety of definitions given to the prismoid 
solid, and in how few cases is the solid defined in a manner 
which fixes it in words which may be taken as a mathematical 
definition of the solid. As much as has been written about the 
prismoid in engineering journals in connection with the com-

~Computation from Diagrams of Railway Earthwork, A. M. vVellington. 
D. Appleton & Co., (1874.) 

Formulae for Railway Earthwork, John W. Davis. New York Gilliss 
Brothers Pub., [1877.] 
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putation of earthwork volumes, no fixed mathematical defini
tion of it has been agreed upon, and more or less confusion 
exists in the minds of engineers as to exactly what a prismoid 
is, beyond the definition given in the unabridged dictionaries 
where it is defined to be "a solid somewhat like a prism." 

For the purposes of the present paper we shall use a defini
tion for the prismoid which is derived from that given by 
Henck in his Fieldbook, Edition 1854. Where he says CIA 
prismoid is a solid having two parallel faces, and composed of 
prisms, wedges and pyramids, whose common altitude is the 
perpendicular distance between the parallel faces." Let us ad
here to this as defining the prismoid proper. More particular
ly expressed it appears as follows: 

Dejinitz'pn:-A prismoid is a solid haz1itzg two parallel plane 
polygons for bases, aJzd whose side suiface is made up of plane 
faces (triangles or quadrilaterals) formed by joining c01'resp01ul
i1Zg corners of the bases. 

Using correspondi7zg corners to denote any two corners, one 
of each base, such that the straight line joining them is an edge 
of the prismoid. 

The property of the first definition follows immediately from 
the second; that is, it is evident that the solid just defined may 
be subdivided into prisms, wedges and pyramids; while the 
second definition serves to give a more definite idea of the 
shape of the solid as a geometrical figure and leads more di
rectly to what follows below. 

The cross-section or simply section of such a prismoid is the 
section by a plane parallel to the bases. The altitude or 
length of the prismoid is the perpendicular distance between 
the planes of the bases. 

The Associate Pyramid:-If through any fixed point in the 
plane of one of the bases . of the prismoid we draw straights 
parallel to the lateral edges of the prismoid to meet the plane 
of its other base in points which are taken to be the corners 
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of a polygon in that plane, these lines define a pyramid whose 
vertex is in the plane· of one base and whose base is in the 
plane of the other base of the prismoid. This pyramid is 
called the associate pyramid of the prismoid. It is easy to show 
that its volume is equivalent to the sum of the volumes of all 
the component pyramids of the prismoid. 

In analogy, with the prism and cylinder of elementary 
geometry, if about the polygonal bases of the prismoid fixed 
plane closed curves be circumscribed, we have the following: 

Definition:-:-The Cylindroid is the limit to which the Prist. 
moid approaches when the number of the sides ofthe inscribed 
base polygons increases, and their magnitudes decrease,with
out limit.* 

*Wiener in his Lehrbuch derDnrstellcnden Geometrie, Vol. n, p.tge 471, 
defines a Cylindroid to be the scroll generated by a straight line guidiid hy 
n director plane. 

"Eine windschiefe Flreche mit dner einzigell, und zwar unendlich ferne~l 
Leitgeraden, also mit einer Leitebene, ist das Cylindroid." 

Ttl the Theory of Screws, English writers (Ball, Minchin, etc.) apply the 
name. Cylindroid to a particular surface generated by two straights inter
secting a third straight in a common point and.nonnalto it, moving. along 
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The plane closed curves- become the bases of the cylindroid, 
and its side surface is a ruled surface. The associate pyramid 
of the prismoid thus becomes an associate cone to the cylin

droid. 
Under the above definitions we may now proceed to demon

strate the fl)llowing theorem, which the writer first heard enun
ciated by Professor W. M. Thornton, of the University of Vir
ginia, about ten years ago, but which he has never seen in 

print. 
The mean area of the Prismoid (Cylindroid) exceeds the 

average area of its bases by one-sixth the area of the base of 
its associate pyramid ( cone). * * 

Considering first the prismoid, we may give here first, the 
tentative method of identification employed usually to show 

it under fixed law. The angle between the first two straights varying per
iodically according to law. The equation to the furfaee is 

While the name Cylindroid has been thus differently appropriated to desig
nate these higher mathematical surfaces, it has been thought to be no viola
tion to use it in the present paper for the purpose of clearing up the rail
road solid, it being very unlikely that any ambiquity will ever arise. 

**In the Third Edition of one of the most recent text books on the Theory 
and Practice of Surveying we find in a foot note there the nearest approach 
to this theorem in print. In speaking of the different methods used for 
computing the earthwork volumes the foot note goes on to say: 

"Th" method by 'meAn end areu$,' wllel"~ill the volnm" Is HBsnmerl to he th .. m~",n 

of the end areaS into the length, always gives tOI) gl'e;.tt it v()lnme (f'ixct>pt, when n great
er (',ent~r height 18 found in conne(':.tion wIth", le;,:s tnt-HI wi~1th, whio:l ::!el<lom oneUl't-;) , 

the exee;::.t:t bein~ ot.1e-:uxth or the V{)hllne nj"rhe pyrumil-ls involvell in thp '(:l('rnpnt:II'Y 

lorms of tht': prif:moirL U 

This i~ wrong rut" the eX.e,eBl" is one-halt' I)f' tl)l:> v;)lllme~ 11Ii' the pyrumiil::; invnlvcfl in 

the eoIeulentary fonus of the pril:$lnoill. 
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that Newton's Rule for Mean Area is applicable to the mean 
area of the prismoid. * 

Let Br, B2, Bs represent the area of the base of a component 
prism, wedge and pyramid of the prismoid respectively. The 

volume of prism, V1=H[t(B1+B1)-tO], 

wedge, 

pyramid, 

V2=H[t(B2+o)-tO], 

V a=H[t(Bs+o )-tBa], 

where H is the altitude. Using the same symbols, if B' and 
BfI are the areas of the bases of the prismoid and Bp that of 
its associate pyramid, then 

and 

B' + B"=2.'(B1+ B2+ Bs), 

Bp=2.'Ba. 

Therefore the volume of the prismoid is 

V=H[t(B' + B")-tBp]. 

Passing to the limit the volume of the cylindroid is therefore 

V = H[t(B' + BfI)_tBC]. 

Using B', B", Be to represent the areas of the bases of the 
cylindroid and its associate cone respectively. 

The above is not a demonstration but merely an identifica
tion, and is only given here to parallel the process by which 

"The so-called demonstmtlOn is as follows: 
USlDg the same nQtations as ILllove. let M be the .u'ell <>f the section mid-w>lY bet\v.en 

the hllsas. then for >I compon~nt 

prism 

wedge 

pyramid 

Vl=HBl=tH[Bl+Bl+4Ml], 

V2=t HBz=t H[B2+o+ 4M2]' 

V 3-t HBa-tH[Ba+o+ 4Ma], 
Honce the volume of the prismoid is 

V=1'(Vr+V2+Va) 

=t H(B' + B" + 4M), 

M1=B1; 

Mz=tB2 ; 

Ma=tBa. 
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the result as shown in the foot-note is obtained, which is given 
by the text books as the prismoidal formula and the demon
stration for it. 

It would be more logical in giving an elementary deduction 
of a formula for the prismoid volume to proceed as follows, 
after first showing that the solid is composed of prisms, wedges 
and pyramids; thus the volume of a component prism is 

wedge 

pyramid 

V=HBl=tH2Bl' 

V=tHB2• 

V=tHBa. 

Hence the volume of the prismoid is 

V=H[t~'(2Bl)+i~·B2+t~·Bs]. 

=H[t~'(2Bl+ B2+ B3)-l~·B~J. 

=H[t(B' + B")-tBp]. and so on. 

It is only through the direct geometrical process for deter
mining volumes of solids that we arrive in a satisfactory man
ner at the most appropriate formula for that purpose. Such a 
formula is then the true one for determining the volume of the 
particular solid in question as it is in general the simplest one. 

Let us regard then the cylindroid as the highest type of the 
solids we have been considering, of which the prismoid and 
other degenerate forms are but particular cases. Thus we de
fine the cylindroid independently of the prismoid as follows: 

A cylindroid is the solid cut out from between two parallel 
planes by a moving straight, which finally returns to its initial 
position. 

Alter idem; 
A cylindroid is a solid whose bases are two parallel plane 

surfaces bounded by closed curves, and whose lateral surface 
is a regulus. 

The regulus will in general be a scroll (warped). 
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Since a scroll is fixed when a linear director, one position of 
an element and the director cone is given. Then the cylin
droid is fixed, given one base, one element and the associate 
cone, together with the position ofthe plane of the other base. 
. Again, if the cylindroid be given the associate cone is at 

once fixed, for from thc first definition it follows, that if through 
a fixed point in one of the planes a straight passes and moves 
so as to be always parallel to the straight which cuts out the 
cylindroid, the former cuts out the associate cone from the 
space between the two parallel planes. . 

To compute the volume cut from between two parallel planes 
by a moving straight, we proceed to find first the area of any 
cross-section (the area of a running section parallel to the base 
planes). 

Project the moving straight and its traces with the planes 
on any plane parallel to the bases. 

Let A be the length of the projection of that part of the 
straight which is included between the parallel planes, its ex
tremities being B' and B". 

Let d(} be the angle through which the line Ii turns in mak
ing a small shift, 0 the point of contact of A with its envelope 
and [l the distance of one end of ,{ from O. 

p --

Q---:~-:"-- -;-' --+-----( 

. .A.:~i§p:la~e parallel to the bases cuts the moving straight in a 
pointw}j'ich·divides it in constant (aoo, the projection (say P) . , 

of this point divides Ii in the same ratio (say min,) this plane 
alsQdlvidestMi aItitild~ H Of'the 'eyU'ftciroidro the sa:me ratio. 

Put n 
PB"=-l=II' A.. 

m+n f •• 
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The area swept over by J. is the area included between the 
two curves traced by its extremities, so that if (B') and (B") 
are the areas of the two closed curves traced, then (B")-(B') 
is the whole area swept over by A. In like manner 
(P)-(B') would be the whole area swept over by k' J.. 

The area swept out by A turning through dN is 

d(B")-d(B')=t(p+ ).)2 dIY-~/12 dlY 

=p}, dlY+ t).2 d() . 

ButfiA,IY)=o is the polar equation to the base of the associate 
cone, hence 

and 

tJ.2 d8=d(Bc) 

d(B")-d(B')=/,;, dIJ+d(Bc) (I) 

is the element of area included between the curves traced by 
Bn and B' . 

In like manner 

--.-:pk' A dN+-tk'212 d8, 

=k'pl dIJ+k'2d(Bc) (2.) 

Multiplying (1) by k' and substracting (2) from the result, we 
have, observing that k' + k" = 1, 

d(P)=k' d(B") + k" d(B')-k' k" deBe). 

This is the relation which holds between the elementary 
areas of the curves traced by the points B', P and B", referred 
to any system of coordinates. 

If we integrate for a complete circuit of these points (closed 
curves) we have the relation between the bases of the cylin
droid, the base of its associate cone and any cross-section of 
the cylindroid parallel to the planes of its bases. 
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Thus 

P=k'B" + k"B' -k' £'Bc. * 
Put now I-k' for k", then 

P= B' + (B" - B' - BeW + Be k'2 (a). 

Thus P is a quadratic function of k'. If now k' be allowed 
to vary continuously from 0 to I, then P becomes a running 
cross-section taking in succession all the values of the sections 
from one base to the other. The average of all of these is then 
the mean area of the cylindroid. Thus the mean area of the 
cylindroid is in symbols 

I f1 !2=-- Pdk' 
1-0 ' 

~ 

= fl[B'+(B"-B'-Bc)k'+Bck'~J dk', 
o 

-- 1 (B" + B') 1 B --2 - -If c· 

Otherwise by the the ordinary geometrical process, iet lz be 
the distance, of the cross-section P from the plane of one of the 
bases (say 13'), then lziH==k', substituting in (a) 

B"-B'--B. B 
P=B'+--H----C,lt+ H~ lz2. 

The section of a cylindroid is therefore a quadratic function of 
its length. The volume of the solid is then 

V=fH Pdlz. 
o 

Putting in the second member above for P and operating we 
have as before 

v = H [t(B" + B')-lB,J. 

Tn}sthen is the rational formula for computing the volume of 
1ill),y.cylindroid or prismoid, It should therefore be expected 
'~' ,"',- "'/" "--~-~ ""--,--.-, .. ,-"-.--.. --"'-.. -.------,~-----~ 

*This is J,IolcHtch's Theorem. 
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to give the volume of the solid, with less labor than is required 
by any more comprehensive formula. 

It is easy to eliminate Be between equations 

P=k'B" +k"B'--k'k"B" 

and 

thus getting the mean area td in terms of the base 
that of any cross-section, as for example putting 
then P becomes M the mid-section. Hence 

M=t(B" + B')--iBe, 

g=t(B" + B')-t Be. 

areas and 
k':=k" t 

:.b 

From which by subtraction we see that the mean area differs 
from the mid-area by one-twelfth the base of the associate 

cone. 
Eliminating Be we have 

td=-}(B' + B" + 4M). 

This is the form of the so-called prismoidal rule, more gen
erally known as Simpson's Rule, but which is really due to 
Newton [lVletlwdus DiffC7'e'lltialisJ. It may be found deduced 
in any good work on Integral Calculus [Todhunter, p. 158]. 
It is mis-no mer to call it the prismoid formula, for it applies 
not only to the cylindroid and all of its degenerate forms 
but applies as well to a large class of solids of a 
higher order. One would be as well justified in calling the 
formula above deduced for the cylindroid the "conical formula" 
because it happens to give the volume of a cone-frustum, as 
calling Newton's Rule for mean area the "prismoid formula" 
because it gives the mean area of the prismoid which is only 
one of the degenerate forms to which the rule applies. 

\Ve have seen above that it is a characteristic property of the 
cylindroid (prismoid), that its cross-sectional area is a quad
ratic function of its length, therefore the formula for the mean 
area of the cylindroid is also the formula which gives the mean 
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area of any solid whose cross-sectional area is a linear function 
of its length, but the converse is not true, for in such solids as 
the latte,' (wedges and conoids) there is no associate cone. 

Newton's Rule for mean area gives not only the mean area 
for solids whose sectional areas are linear and also quadratic 
functions of their lengths, but also of all solids whose sections 
are cubic functions of their lengths. It is therefore far more 
comprehensive than the true prismoid formula. The demon
stration of this is also of the nature of an identification; it is as 
follows: (Todhunter Int. Cal., p. 173). 

Let there be a solid such that the area of a section made by 
a plane parallel to a fixed plane and at a distance I from it is 
always 

P=a+ bl+cP+ dF, (1) 

where a, b, c and d are constants. 
Let three equidistant sections of the solid B', M. Bn be made 

by the fixed plane and two others parallel to it in order. Then 
the volume of the portion of the solid included between the 
two extreme sections is 

V=JL Pdf, 
c 

=aL+-}bL2+}cLH+tdU. 

Where L is the length of the solid, i. e., perpendicular dis
tance between the planes of B' and Bn. The mean area is 

therefore 

(2). 

But by (1) 

if I 0; P=B'=a. 

if I tL; P=M=a+tbL+tcL2+tdU. 

if f L; p=Bn=a+bL+cL~+dU. 
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Therefore 

13' -tAM --r- E"=6a+ 3bL-+zcU-t- :~dL{ 

and comparing with (2) we find 

!d=;\-(B' + B"·+-4 M). 

The formula involving the base of the associate cone being 
of a less general character than that just written it is reason
able to expect of it more simplicity in application, as the 
sequel shows. 

Consider for a moment a prismoid. Project it on a plane 
parallel to the bases. In this plane refer all points to any sys
tem of rectangular axes. Then if .'1/, y' and x", .Vlf be coordi
nates of a pair of corresponding corners in the bases. The 
coordinates of the corresponding corner in the mid-section \vi11 

be !r(y'+y" ), 

while the coordinates of the corresponding corner of the base 
of the associate pyramid are 

, " , If . \' --. .\' ; y-y . 

The computation of the areas of the bases is the same in either 
case, while in order to compare the labor of computing the 
area of the mid-section with that required for the base of the 
pyramid, it is only necessary to see that in the respective co
ordinates we deal with sums in the one case and differences in 
the other, \vith the additional practical advantage always pre
sent that in the latter case the formula for mean area is in the 
shape of a correction applied to the average of end areas, the 
base of the pyramid in practical cases being small, whereas the 
mid-area generally exceeds the average of end areas. 

While it is of no practical importance to the engineer it may 
nevertheless be interesting to apply the foregoing for the sake 
of illustration to the particular case of the railway prismoid. 
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The engineer in surveying his cross-section, refers the poly
gon to a system of rectangular axes in its plane and measures 
the coordinates of its corners with respect to the road bed line 
and the vertical through its center as axes of abscissa and or
dinate respectively, calling them in order distance-out and 
lzeiglzt. Furthermore he takes no cognizance of the algebraic 
change of sign in coordinates, but merely calls them rights and 
lefts, cuts and fills respectively. The uniform method adapted 
for recording the field notes preserves the identily of the sec
tion. 

Thus if b be half the road bed, lz and m the height and dis
tance-out to the right of center, k and lZ the corresponding 
measurements to the left, the record of the cross-section ap
pears complete in the adapted form. 

o ks kl d Itl lzs 0 

where d is the center height., 
The area of any polygon in terms of the 

7t corners being 
coordinates of its 

2A=1 XlY11+ I X2Y21+ 
'\"2Y2 ,XaYR 

___ +/xnYJ 
zlyd' 

it is easy to see that the engineer's record of his cross-section 
is really a determinant for its double area. Thus the double 
area of the cross-section above recorded is 

~ X ks X ___ /. k~ /. ~ X ':1_ X ___ X _~fl X 0 

b ns nl 0 ml m~' b 

In which the heavy lines join factors of positive product, dot
ted lines those of negative product. The sum of all the pro
ducts is double the area. * 
,--._--------_._-- -----

*This formula for the area of an irregular section was first given in En
gineering News, Vol. XX, No. 39, in an article under the heading "A 
Cross-Section Mnemonic." 
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The cross-sections being written successively in the note 
book, each pair represents the bases of a prismoid whose 
lateral edges are noted, while on the ground by the engineer, 
by joining the coordinates of corresponding corners by a line 
in the notes. 

Let the bases of a prismoid be 

o Ks D HI Hs 0 

b -N~- \\ 701Ml/Ms b 
/ / / 

o kg ki d hI 0 
b ns - nl 0- m~-- b . 

Coordinates in the same vertical are presumed to correspond 
without further indication. 

The double mid-area for such a prismoid is to be computed 
from 

c:. t(K~+ksH(K;+krH(D+krH-(D+d! -t(Hr+d) t(Hr+hr) -HH~+hl) ~, 
b~(Ns+ns) MNs+nr) ~n[ 0 ~MI HMr+mr) ~(M.+ml) b 

while that of the base of the associate pyramid comes from 

Ks-ks Ks-ki D-kl D-d HI-d HI-l~l H~-hl. 
Ns-ns NS-ni -nr -0-~ Mr-mr Ms-m~ 

Employing the same rule in either case as that given for the 
area of any ordinary cross-section, noticing that in the latter 
case the subtractions may change the sign of some of the pro
ducts. 

To apply the result') to a numerica.l case, take the example 
in Henck's Field book, Art. 122, which he uses to compare 
methods. 

B"- 0 . 4 8 12 0 _ 

-915/0 /27 9"-
/ / 

B'=~ ~ 13.6 .:.:: ~ = 
9 21 0 24 9 
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M- 0 6 8 10.8 12.8 II 0_ 
-9 IS 10.5 -0 I3~ 25.59- 355·55 

Bp=i~ ~~ -2=_88.2 
6 21 0 --27 -3 

52= t(B' + B" + 4M)= ~ (B' + B")- ~ Bp 

=328 .2 . 
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The advantage in the computation lies so largely in favor of Bp 
as against M, that neglecting the advantage to be derived 
from the former as a correction to HB' + B") it is preferable to 
use the simple method in cases where the actual volumes are 
to be computed. 

Regularly and ordinarily in practice only three-level sections 
occur, and even then the 'computation of volume is further 
simplified by conceiving the surface ground to be determined 
by gauche quadrilaterals through each of which is passed a 
hyperbolic paraboloid, thus for each such quadrilateral we 
have one less corner in the mid-area and also in the base of 
the associate cone than would have occurred had the Henck 
prismoid been used instead. Evidently the introduction of the 
hyperbolic paraboloids does not interfere with the mid-area 
and the base of the associate pyramid remaining polygons, for 
in this surface one set of generators is parallel to the bases of 
the solid the other set for each surface moves always parallel 
to a fixed plane, therefore the corresponding element of the 
associate pyramid moves in a plane and traces a straight in 
the plane of the base; The reason for this simplification is not 
merely to save labor, but because in fact the volume for any 
gauche quadrilateral as determined by its hyperbolic paraboloid 
is exactly the arithmetical mean of the volumes which are de
termined by considering the diagonals of the quadrilateral suc
cessively as edges of a Henck prismoid. To prove this it is 
only necessary to prove the following: 
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Theorem:-The volume of the solid bounded by plane tri
angles, whose edges are the sides and diagonals of a gauche 
quadrilateral, is bisected by the hyperbolic paraboloid passing 
through the sides of the quadrilateral. . 

Let a and c be two opposite sides of the quadrilateral, the 
solid is composed of two pairs of triangles, a non-contiguous 
pair meeting in a, the other pair in c. Any plane parallel to 
a and c cuts the solid in a parallelogram, for it cuts the planes 
which meet in a in straights parallel to a, and those which meet 
in c in straights parallel to c. This parallelogram moving 
parallel to itself generates the solid. But the plane of this 
parallelogram always contains the element of the hyperbolic 
paraboloid of the (a, c) generation, and since this meets the 
other two sides of the quadrilateral it must be the diagonal of 
the parallelogram, dividing that figure into two equal triangles, 
each of which generates half of the solid. 

Thus the ignoration of the diagonals, while in one particular 
prismoid may give an approximation to the earth volume not 
within the limit of error, in any series of consecutive prismoids 
must give a volume very near the true earth volume, since the 
cross-ridge and val1~y lines are just as likely to occur as one 
diagonal as the other. 

It is under these assumptions then that engineers compute 
earth work volumes. Sections being reduced to three-level 
sections, the computation of mid-area and base of pyramid are 
correspondingly simplified. Thus in the regulation prismoid 

oK D H 0 

b'N-oM'-r 

The mid-section becomes 

o k d h 0 

z;;;o mb 

o 1(K+k) ~(D+d) H H+h) 0 

b HN+n) --0- HM+1n) Ii 
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The area of which can be computed as above, or may now be 
written out as a rule, thus 

8M= 2b(2'S)+(D+d) 2'0. 

Eight times mi'd-area is 2b times the sum of side-heights 
+(D+d) times the sum of the distance-out, 

The consideration of the mid-area is useless and unnecessary 
for the base of the pyramid is 

K-k D-d H-Iz 
N-n o M-m 

and its double area in algebraic form is 

(D-d) (M T N-m-l1). 

One-twelfth of this expression (which may be negative) sub
tracted from the average of end-area"s gives the true mean area. 
It is upon this basis that the tables referred to have been com
puted. A formula may be written down at once 'for the cor
rection to the average end-areas for any given cross-sections, 
but it would in general be too complicated for use. 

An interesting point in connection with the cylindroid 
(prismoid) is the distance of its center of gravity from the plane 
of the mid-section, a value which is used in explaining the 
question of IOllg /zaul. The formula for the running cross
section lends itself to an easy deduction of this. 

Thus if X be the distance of the center of gravity from the 
plane of the base from which II is measured we have by the or
dinary formula, 

vx=IH Phdll, 

putting in the value of P in terms of h from above, and for V 
its value H[-~(B' + B")-tBcJ we have, after integration, 

H[J(B'+B")-tBc] X=H~ [t-B'+tB"-l2BCJ. 



ECHOLS. THE VOLUME OF THE PRISMOTD. 

The distance of the center of gravity from the mid-section is 

x=X-tH. 

Substituting in the above we get 

H B"-B' x = - --_ .. _--
6 B"+B'-tBc· 

Whence the approximate formula used by the engineer 

H B"-B' 
.. \~ = (r =B"" +-;-B~';-' 

Since t Be is practically small when compared with B" + B'. 
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THE BEGINNING OF MATHEMATICS. 

By PROF. W. B. RICHARDS, ROLI.A, Mo. 

11 GEOMETRY. 

-p~ St))ru i1amA(k~/} rLrparro)) ~;ri Tf.wp.s7:pia)). 

Euclid. ap. Procl. Diadoclz. 

It is unfortunate that the adjective.-Greek-in prevailing 
use to designate whatever pt:rtains to the people of whose 
intellectual labors we are about to speak, should suggest but a 
part-and what at some periods was a minor part-of the 
territory through which this people was scattered, and in which 
their mental activity had its first field. The Hellenes them
selves knew their country, as their descendant.c: still know it, 
only as Hellas. The name Greece, given to it by the Romans 
and adopted by common consent of later times, is derived from 
rpat/rol, the name of a small tribe with whom the Romans 
first came in contact. It is not mentioned by any writer 
earlier than Aristotle. The employment of the term Greek, 
while sanctioned by usage, is apt to be misleading to one bet
tel' acquainted with modern geography than with ancient his
tory. The national spirit was in a largely measure wanting 
among the Hellenes, and the ties which they recognized were 
based upon ethnic, rather than geographic relations. The 
name Hellas was broad enough to include not merely the 
dwellers in the little peninsula which now bears the name of 



40 RICHARDS. THE BEGINNING OF MATfU::rATICS. 

Greece, but all, under whatever sky, who might claim descent 
from them-not merely the walker in the groves at Athens, the 
hardy Spartan, or the Messenian mountaineer, but him as weli 
of the same stock who had his household gods by Leucadian 
steep, or breathed the soft air of Italian Sybaris. Indeed the 
first fruitage of what was to be so glorious a springtime sprang 
upon other soil than that which lies between Olympus and 
Taenarum. It was among the colonies, not on the main-land, 
that were made the first steps in Literature, in Philosophy and 
in Science. Except the Boeotians, Hesiod and Pindar, no poet 
of the first rank (if the former's theogony and rough and ready 
expressions of practical wisdom entitle him to be named as an 
exception) acknowledged as his home what we know as Greece 
until the time of Aeschylus. Homer, if we admit that there 
was one such man who wrote the poems attributed to him, was 
an Ionic Greek, living in Asia Minor or on one of the islands 
that fringe its coast. The biting iambics of Archilochus, the 
noble lyrics of Simonides, Anacreon's praise of Love and 
Wine, the mutual sighs of Alcaeus and soft, slandered Sappho, 
all come from lips that learned to lisp numbers amid the 
Aegean isles. All the early philosophers from Thales to 
Sacrates, that is for two centuries, were natives of the one or 
the other of the Hellenic colonies. 

The Ionic Greeks, who had their seats along the middle part 
of the western coast of Asia Minor and in the islands adjacent 
to it-"Sons of lavan", as the Scripture calls them-were the 
earliest movers in the lNork of Greek culture. Their character
istics as a people and their situation combined to give them 
this precedence. The Ionians were distinguished among the 
other Greeks for their quickness, their viracity, their readiness 
to receive impressions. The stuff of which they were made was 
far more fictile than that of their Aeolic or Doric kinsfolk. 
They possessed in the highest degree among Greeks the qual
ities that distinguished the Greeks from their contemporaries, 
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Their location, in the direct track of the western process of 

civilization, and their commercial relations with the Egyptians 

and the Phoenicians, contributed to make them first among 

Aryans to feel the impetus toward scientific investigation 

which an acquaintance with the attainments of these people 

would give. 

The meagreness of the contemporary historical 
records does not enable us to speak with definiteness 
and certainty as to the exact connection between the, incipient 
Greek culture and the achievements of its predecessors. 
Ueberweg (Hist. of Philosophy, Vol. 1., P.31,) says: "To 
what extent the philosophy of this age (and hence the genesis of 
Greek philosophy in general) was affected by Oriental influ
ences, is a problem whose definite solution can only be antici
pated as the result of the further progress of Oriental and, es
pecially, of Egyptological investigations. It is certain, how
ever, that the Greeks did not meet with fully developed and 
completed philosophical systems among the Orientals," The 
same general fact is true of Science. Nor are the traditions of 
either the Greeks or the Orientals entirely trustworthy. It 
would not be strange if the early Greeks, anxious to lend a 
flavour of antiquity to their teachings, should have attributed 
their origin to the Egyptians, nor if the national pride of this 
latter people first consented to the attribution, and then insisted 
upon it, until they, and the world at large, placed far more 
stress upon the indebtedness of the younger to the older peo
ple than is justified by the facts. The work of the Orientals is 
not to be neglected in estimating the influences that brought 
about the beginnings of Science, yet on the other hand we 
need to guard against the danger of ascribing to it a part in 
the history of Science in general. and Mathematics in particu
lar, beyond that which it really played. What they did was a 
leading up to Science rather than a beginning of it, and the 
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debt due to them from the Greeks and all later nations was not 
comparably so much for actual contribution as it was for sug
gestion and incentive. 

The beginning of Science is signalized by the appearance 
for the first time of a single name in connection with the ad
vancement of knowledge. The Assyrians had an Astronomy, 
with copious records of observations made, but no astronomer; 
the Egyptians Iud an inkling of Geometry, but no geometer. 
Some progress in learning may be made under the push of 
natural laws by a people, working without concert, yet happen
ing the one occasionally to cap the discovery of another with a 
"greater; but no body of thought assumes the proportions of a 
science until its scattered fragments have been collected and 
fused together in the crucible of a single brain. 

The same venerable personage stands at the head of the 
long list of ?hilosophers, astronomers and mathematicians. 
Indeed at this early period to be one of these was well nigh 
being the others. 

Thales of Miletus was born in the Ionic city of that 
name on the western coast of Asia Minor about the 
year 640 B. C. Herodotus (Book I.!. c. 170) 
says he was of Phoenician descent. Diogenes 
Laertius gives Plato as authority for the tradition that his an
cestry might be traced back to Cadmus, who first introduced 
letters into Greece, and Zeller agrees with ~his view. Another 
account makes him out a native Milesian of pure Greek blood. 
Whether or not his family relations were such as would involve a 
connection with the people by whom his compatriots wer'e be
ing imbued with learning, the circumstances of his birth placed 
him in the immediate path of the westward flowing stream of 
knowledge. Thales, who enjoyed among the Greeks a rep uta-

*Lives of the Philosophers, r., I. 
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bon for wisdom which we know not whether to attribute more 
to his own worth or to the obscurity of the period, was by com
mon consent acknowledged first of the seve>n sages. His most 
valid claim to the admiration of his contemporaries and pos
terity as well, was the alleged prediction of an eclipse of the 
sun, which took place in 585 B. C. This was the same ob
scuration otherwise famous in history as having occurred just 
as the Lydian and Median Kings·. were about to join battle 
on the banks cf the river Halys, and which so filled these bar
barous potentates with awe that they at once declared a mu
tual peace. Herodotus, who was too fond of a good story to 
be embarrassed by considerations as to its truth, recites this 
legend (B'k. I, c. 74), and later authorities follow him. There 
are, however, we regret to say, serious, if not insurmountable, 
difficulties in the way of our lending credence to this pleasant 
narrative. The state of Astronomical science at the time 
would scarcely warrant the belief in the possibility of so exact 
a calculation. It is not at all unlikely that Thales was ac
quainted with the Assyrian "Saros," a period of eclipses cover
ing 233 lunations, 01" even the longer period of 600 years. 
But while eclipses ofthe moon were predicted by means of these 
cycles it is disputed whether eclipses of the sun could be foretold 
in the same way. To have predicted this phenomenon for any 
definite locality moreover, would have involved a knowledge of 
the sphericity of the earth, which was sufficiently foreign to 
Thales' conceptions. Plutarch says that Thales was engaged 
in commerce, and all the authorities agree that in this way he 
was led to Egypt, and became acquainted with the Egyptian 
rudiments of Geometry. Diogenes Laertius quotes Hierony
mus of Rhodes as asserting that he never had any teacher save 
when he went to Egypt and associated with the priests.* 

*Lives of Philosophers, I., 6. 
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Hence he obtained the inspiration of his Geometric investiga
tions; his speculative spirit seized upon the crude fragments of 
truth tortured from centuries of experience and observation, 
and began to build beyond them into the Empyrean. Proclus 
(Ad. Euclid. p, 19) says: ... 

. _" - ~ 1" '}.u' ' ~"r,'l)" "gal,],,: 01£ 7[/I(I)r:O)) w; ," qUiCr:U)) ~ .lNUll psr:7jtarSlI $,::; T'Y;lI J'd,/,(J..()II. 

7:7;V es(opilJ.)) TfJ./Jt:'I/,) Irf/.! rrollAfi p.S)) (J.uro~ cUl'S, j[o)Jev}) as t'(l~ (l/,~"'C(I..~ 
...., .., \ (' .. k fJ ~ ,_ ' 'I Q 'i j "'" 

r:ue::; peT aUTO)) u'PYJr7J(J(J.r:u, r:o,::; PSlI Il.lr()AIICWr:el'UlI i!:7[ljJ(J.",,{/W, T()(::; 

i)i: (J.i(JI'J7jTCk((n:spoll."* 

The foHowing propositions are attributed to Thales: 

(1.) The circle is halved by its diameter. 

'(2.) The angles at the base of an isosceles triangle are"equal. 

(3.) The vertical angles formed by the intersection of two 
right lip.es are equal. 

(4.) Two triangles are equal when they have one side and 
two angles of the one equal respectively to the corresponding 
parts of another. 

(5.) The angle inscribed in a semi-circle is a right angle. 
Diogenes Laertius says, "Pamphile relates that he (Thales), 

having learnt Geometry from the Egyptians, was the first per
son to describe a right angled triangle in a circle, and that he 
sacrificed an ox in honor of his discovery. But others, among 
whom is Apollodorus, the calculator, say that it was Pythagoras 
who made this discovery. It was Thales also who carried to 
their greatest point of advancement the discoveries which Cal
limachus in his iambics says were first made by Euphebus the 
Phrygian, such as those of the scalene angle and of the triangle, 
and of other things which relate to investigations about lines."** 

*Thales, after having journeyed into Egypt, brought back this science: 
(Geometry) to Greece and both discovered many things himself and handed 
down to his successors the elements of many things, approaching some 
in a more general manner, some in a more experimental. 

**Lives of Philosophers, r., 25. 
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(6.) The homologons sides of similar triangles are in pro
portion. Plutarch distinctly ascribes this to him. 

Weare confronted with the difficulty of which we have 
spoken in attempting to determine what part of the enuncia-· 
tions accredited to Thales was derived from his intercourse 
with the Egyptian priests, and what was original with him. 
We can readily see how the conclusions, (I), (2) and (3), could 
be reached inductively from observation of particular cases, and 
might belong to that portion of his teachings at which Produs 
says he arrived (J.i{JI'j'ln/{(~Jrs/!ul>-in a more sensible (empiric) 
manner-a portion which may fairly be assumed to stand for 
his immediate acquisition from the Egyptians; while (4), (5) 
and (6) would seem to belong to that part proved XI.IY,i/.fX(/rr:2/ J lJ)) 

-more generally-and to be the product of his own invention. 

The proof of (5) [Euclid I, 3 I,] involves (2) and the principle 
that the sum of the angles of any triangle is equal to two right 
angles. This would demand that Thales should be acquainted 
with the last named proposition-that is if a general proof of 
(5) was offered. Produs asserts that the theorem concerning 
the angles of a triangle's being equal to two right angles was 
first proved in a general way by the Pythagoreans, but it was 
probably known to early mathematicians as a fact of observa
tion. 

Two applications of this new instrument, Geometry just 
being fitted to the worker's hand, to the solution of practical 
problems-marvelous enough they must have seemed to the 
ancients-are handed down as having been made by T~1ales. 

These were the determination 

( I) of the distance of a ship at sea; 

(2) of the height of the pyramids by their shadows. 

These problems are interesting, besides in other respects, as 
showing the influence of environment in determining the direc
tion of mental effort, and confirming the principle, upon which 
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we touched in the preceding paper, that inventions in the field 
of science spring from the suggestion of practical questions. 
The residence of Thales upon the coast and among a maritime 
people, naturally presented the first problem to his inquiring 
mind, and furnished an incentive to the solution of it which 
would have been absent had he spent his days inland; while 
his travels in Egypt, beneath the shadow of the lofty pyramids, 
could not fail to stir his spirit up to an attempt to compass 
what seemed the impossible feat of measuring those inacces
sible heights. And it is more natural to suppose that the im
portant general theorem that the sides of equiangular triangles 
are proportional, whiyh it is generally assumed that the s{)lu
tion of these problems presupposed, was discovered in the at
tempt to solve them, than that it occurred to Thales in a purely 
abstract way, and that the questions were afterwards reRolved 
by its aid. 

Diogenes Laertius quotes Hieronymus of Rhodes as saying 
that "He measured the pyramids, watching theil'shadow and 
calculating when they were of the same size as that was." 
Others give an account of the feat which would involve the use 
of Theorem (6) alone. Obviously enough both of these prob
lems might be solved without using (6), by means of (2). 

So much stands accepted in history as the tangible work of 
Thales. But remarkable as were these ac hievements in com
parison with aught that had been done before, they in them
selves mark but a fraction of the service of Thales to later 
science. The prime element of this contribution was the in
stitution of a method of inquiry which passed beyond the in
dividual instance, and sought to lay an unchanging foundation 
in the principles of abstract truth. Science was set on foot and 
might run its victorious course. 

The immediate successors of Thales in thl'! Ionic school of 

Philosophy, while they took up the physical speculation in 
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which he had set an example, do not seem, so far as any re
cords show, to have made any advancement in Mathematical 
invention. The next step in the development of Geometry 
was the work of the Italic school-to accept the ancient geo
graphical division-that is, of Pythagoras and his followers. 
The name of Pythagoras is one suggestive at once of myth and 
mystery. The real figure of the man has come down through 
history girt about with an increasing nimbus of mystic tradition. 
He is the hero of a cycle of philosophic legend. Not only his 
own age but later ages have ascribed to him the possession of 
supernatural power, and have painted him and his school in 
the colors of romance. Out of the mass of tradition which has 
been handed down to us, it is impossible to assert confidently 
how much is fact and how much fiction. His life, if the reports 
of the ancient historians are accepted, was as varied ag the 
range of his speculations. 

He was the son of Mnesarchus, the Tyrian, a seal-engraver, 
and was born in the island of Samos about 582 B. C. He 
studied at Lesbons under Pherecydes and at Miletus under 
Thales and Anaximander. He visited Egypt and spent 
twenty-seven years at Memphis and Thebes communing with 
the priests and sages. When Cambyses over-ran Egypt in 
525 B. c., Pythagoras was among the captives, and was car
ried off to Babylon, where he was held as a slave for some 
years. Here he became acquainted with the learning of the 
Chaldaeans, and gained as well an introduction to the religion 
of the Hindus. Having obtained his liberty, he visited in tum 
Crete, Sparta, Elis, and Delphi, and returned to his native isle 
to establish a school. Discontented with the tyranny of Poly
crates, he proceeded to Italy and founded at Crotona "in the 
house of Milo", a school which soon attracted a large number 
of attendants. * Interference in local politics caused his own 

*Diogenes Laertius says three hundred. 
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banishment. the burning of his house and the dispersion of his 
followers. He retired to Metapontum where he died SOOI1 

after, (about 490 B. C.) 
Such the narrative that might be constructed by one liber

ally credent. The statements as to his travels and adventures 
in the East, it has been observed, mg.y either be statements of 
fact or an invention to connect his teachings with earlier orig
inals. There are reasons to believe that he did travel in Egypt; 
the rest is more doubtful. Cicero says, (De. Fin., V. 29, 87) 
"Aegyptlt1JZ lustravit." He also says that Pythagoras came to 
Crotona in 01. 62. 4 (529 B. C.,) (Rep. II. 15). If this be true 
we should have to give up the story of his Babylonish captivity. 
\Ve must ever regret that the history of Pythagoras' life, writ
ten by Theano, a beautiful young girl whom he espoused in 
his seventieth year, has not come down to us. 

The society which Pythagoras founded was 011 its scientific 
side a school of philosophic inquiry and instruction, while on 
its ethic side it partook ofthe nature of a religious brother
hood. The search for truth was combined with a rigid person
al discipline. Intending disciples were said to have been sub
jected to a long period of probation, of which strict obedience 
and absolute silence were the cardinal features. Diogenes 
Laertius says that this period was five years. The use of ani
mal food was permitted only within certain restrictions. Cer
tain vegetables were tabooed, and celibacy was inculcated. 
Thus we see that the ancient Pythagoras and the modern 
Tolstoi are alike as regards both theory and practice. 

The speculations of the school took a wide range-over phil
osophy, astronomy, mathematics, music.. Best known, perhaps, 
of their tenets is that of the transmigration of souls, which their 
great founder is thought to have imbibed in his Oriental wan
derings. He, himself, claimed to be a son of Mercury, and to 
have existed in many previous shapes. He said that Mercury 
offered him any gift save immortality and that accordingly he 
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requested that, whether living or dead, he might preserve the 
memory of what had happened to him. So was his existence 
continuous. * 

The philosophical conceptions of the Pythagoreans were 
strangely blended with arithmetic considerations. The whole 
system of the universe was held to depend upon the relations 
between numbers. "The Pythagoreans seem" says Aristotle, 
"to have looked upon number as the principle and, so to speak, 
the matter of which existences consist." "Number," says 
Philolaus, (the successor of Pythagoras), "is great and perfect 
and omnipotent, and the principle and guide of divine and hu
man life."t 

Produs states, in his commentary on Euclid's elements, that 
the word "mathematics" originated with the Pythagoreans. 
The same author says that the Pythagoreans made a four-fold 
division of mathematical science, its parts corresponding to 
Arithmetic, Music, Geometry and Astronomy, respectively.t 
Diogenes Laertius relates that "It was Pythagoras also who 
carried Geometry to perfection, after Moeris had first found 
out the principles of the elements of that science as Aristidides 
tells us in the second book of his History of Alexander."§ The 
Pythagoreans defined a point as "Unity having position." 
They showed that the plane around a point is completely filled 
by six equilateral triangles, four squares, or three regular 
'hexagons. (Produs). Eudemus attributes to them the theorem 
that the interior angles of a triangle are equal to two right 
angles, and gives their prool, which is substantially the same as 
that given by Euclid. We have it stated upon the same au
thority (quoted by Produs in his commentary) that the prob
lemsrelating to the application of areas, the construction of 

*Diogene$ Laertius. I..ives of Philosophers, B'k. VIII, c. 4. 

tEncycIop~diaBri,tll.n:nica, Vol. xx. p. 144. 

tEncydop<edia :Britannica, Art. Pythagoras, p. 146. 

§Dio~nes Laetd~,Li~es~f PhHosophers, VIII, II. 
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the five regular solids, and the discovery of irrational quantities 
were all due to Pythagoras. Three of the five regular solids, 
the tetrahedron, the cube and the octahedron, were known to 
the Egyptians. and occur in their architecture. Pythagoras 
discovered the other two, the dodecahedron and icosahedron, 
and shewed how to construct them all. The discovery of the 
existence of irrational quantities was one of the most notable 
made by the Pythagorean school; it may have arisen from an 
attempt to express the length of the diagonal of a square in 
terms of a side. It paved the way for the general treatment of 
proport~on found in Euclid-a treatment which holds as well 
for incommensurable as for commensurable magnitudes. 

The theorem best known in connection with the name of 
Pythagoras-in fact frequently cited as the Pythagorean 
theorem-is that which asserts that "the square on the hypo
tenuse of a right triangle is equal to the sum of the squares on 
the other two sides." This proposition is distinctly attributed 
tf) Pythagoras by Vitruvius, Diogenes Laertius, Proclus and 
Plutarch. Diogenes Laertius says, "And Apollodorus, the 
logician, records of him that he sacrificed a hecatomb when he 
had discovered that the square on the hypotenuse of a right
angled triangle is equal to the squares of the sides containing 
the right angle. And there is an epigram which is couched 
in the following terms: 

"When the great Samian sage hi" nobl~ problem found, 
A hufidred oxen dyed with their life blood the ground." 

This, it will be observed, is just one hundred times the amount 
of gore which the same author represents Thales as having 
spilled after having inscribed a right angle in a circle. Plu
tarch in his work on "Isis and Osiris," dealing with the mys
teries of Egyptian religion and learning, asserts that the ancient 
Egyptians knew that a triangle whose sides contain three, four 
and five parts respectively is right-angled, and that the square 

*Lives of Philosophers, VIII, II. eYonge's Translation.) 
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on the longer side is equal to the sum of the squares on the 
other two. It has been very plausibly suggested, too, that the 
fact might have become known to them in a special case by 
the observation of the tesselated floors common in Egyptian 
buildings. The square on the diagonal of one of the square 
tiles would be seen to contain four of the isosceles right tri
angles into which that diagonal divided the block, while each 
of the squares on the sides contained two such equal triangles. * 
To Pythagoras. however, belongs the merit of having given the 
first general proof of the proposition-a proof the same, there 
is no reason to doubt, as that now given in our Geometries. 
Many different proofs of this historically interesting proposi
tion, it may be noticed in passing, have been offered; a number 
of them have been collected in one publication by a German 
named Hoffman. 

Materials do not exist for writing a succinct history of the 
progress of Mathematics in the century and a half between 
Pythagoras and Euclid. We know that it was a period in 
which there was much geometric study, and in which consid
erable additions were made to the fund of Mathematical 
knowledge, but of these only meagre and fragmentary records 
remain. There were three problems which especially engaged 
the attention of mathematicians: 

1. The duplication of the cube. 
2. The trisection of an angle. 
3. The quadrature of the circle. 

-two, three, four, one might say as a mnemonic. The work 
of some few men-leading like stepping-stones from the one to 
the other of the great names mentioned-deserves to be no
ticed, Our account is in the main taken from Marie's "His
toire des Sciences Mathematiques et Physiques." Hippocrates 
of Chios, (bn. 450 B. C.) wrote a book on the elements of 

*See the artic1e--Pythagoras--in the Encyclopredia Britannica, from 
which many of the above statements are derived. 
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Geometry; he was the first to reduce the problem of the du
plication of the cube to that of the insertion of two mean pro
portionals between two given magnitudes. This Hippocrates 
is not to be confused with the physician of the same name. 

Zenodorus (bn. 450 B. C.) is the author of· the oldest work 
on Geometry which has come down to us. This work was pre
served by Theon, of Alexandria, in his commentary on the 
"Syntax" of Ptolemy. Zenodorus attempted to combat the 
opinion, then. common, that equal contours enclose equal sur
faces. 

Archytas (440-380 B. C.), according to Diogenes Laertius, 
"was the first person who applied mathematical principles to 
mechanics and reduced them to a system. and the first also 
who gave a methodical impulse to descriptive geometry in 
seeking in the sections of a demicylinder for a proportional 
mean which should enable him to find the double of a given 
cube." He was also the first person who ever gave the geo
metrical measure of a cube, as Plato mentions in his Republic. 

The great Plato (430 B. C.-347 B. C.) left no work on 
Geometry, but he rendered mathematics a signal service in di
recting the attention of his disciples to the study of the conic 
sections, and in the invention of loci for the solution of the pro
blems mentioned above. 

Eudoxus of Cnidus (409 B. C.-356 B. C.) was a man of 
varied learning. Apollodorus in his "Chronicles" says that 
"he was the inventor of the theory of crooked lines."* Archi
medes, in his letter conveying to Dositheus, his treatise "On 
the Sphere and Cylinder," attributes to Eudoxus the theorems: 
"a pyramid is the third part of a prism having the same base 
and altitude; a cone is the third part of a cylinder having the 
same base and altitude.'!' Eudoxus gave a solution of problem 
(I) which Eratusthenes regarded as excellent, but which is lost. 

*Diogenes' Laerlius, Sub. nomine. 
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Menaechmus (bn. circa. 395 B. C.) studied particularly the 
elementary theory of conics. He gave a solution of problem 
(2) worthy to be mentioned. Using the modern notation it is 
as follows: Let two parabolas have their axes at right angles, 
and let p and q be their respective parameters. THen the 
equations will be y2 pz (r) and x 2=qy (2) 

from (r)p:y y:x 

and from (2) q:r=z:y; 
for the point of \ntersection, 

p:y y :r=z :q. 

So to find the required proportionals between two quantities, 
with these lines as parameters construct two parabolas with 
axes at right angles; then the coordinates of the point of inter
section will be the required proportionals. 

The name of Euclid has become literally synonymous with 
Elementary Geometry. Of no man can it be more truly said 
"He lives in his work." Indeed he scarcely lives for us out
side of it. His fate is that of some of the world's greatest-to 
have handed down an utterly imperishable work, and yet to 
have left upon history but scant impress, if any, of his own 
personality-the fate, for instance, of Homer and of Shakspere. 
Euclid's life, falling midway between the age of fable and that 
of careful and minute historic record, lacks the wealth of legend 
and tradition with which the stories of Thales and of Pytha
gora6 were richly woven about, and fails of the full narration 
which it might have .received in later years. Nothing is defi
nitely known as to his parentage and place of birth. He 
flourished in the first half of the third century B. C. Produs 
asserts that he was younger than the associates of Plato, but 
older than Eratosthenes (276- I 90 B. C.) and Archimedes 
(287-2r2 B. C.) The new Egyptian city, Alexandria, shel
tering the ashes and perpetuating the name of its great founder, 
was just rising into importance as a centre of culture. 
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Ptolemy Soter, to whom Egypt had fallen in the division of 
Alexander's spoils, had founded the great Alexandrian library, 
and gathered about him a circle of savants. Among others 
Euclid was invited thither, and here founded his school of 
mathematics. The King himself-so the story goes-was led 
by his enthusiasm for learning to become a pupil of the great 
mathematician, but finding the "Elements" rather more difficult 
reading that that to which his kingly patience was accustomed, 
inquired if there was not some easier way of learning the sub
ject. To which Euclid made the celebrated reply which stands 
at the head of this paper: "There is no royal road to Geom
etry." Two of Euclid's mathematical works have been pre
served, the Elements p'n)(xs!ll.) and the Data (dei'f()/~i1/(/'). 
Euclid's Elements have been accepted in all later times as em
bodying the essential requirements of primary geometrical 
teaching. Boetius, senator and philosopher, the last of the 
Romans of the old school, is said to have translated a part of 
the Elements into Latin (6th century), but in the lack of consis
t:!ucy among the manuscripts, critics are inclined to doubt their 
authenticity. The Arabs, to whose labors we are so largely 
indebted for the preservation of learning during the Dark Ages, 
busied themselves with translations of Euclid; one such trans
j·:ttion by Nasr-ed-Din Ibn-Hassan, the Persian astronomer of 
the thirteenth century, appeared at Rome in 1594. The first 
printed edition was a translation from the Arabic by the Italian, 
Campanl), which was made in 1482. About twenty years 
la.ter a translation from the Greek was made by Zamberti, and 
printed at Venice. Our one English edition containing all the 
works of Euclid is the Oxford edition, published by Dr. David 
Gregory in 1703, with the title Rvx}edJol) Ttl (f(l)!;OpS).Ifl. The 
compilation which has formed the basis of later English works 
on the subject, is the one given forth in 1756 by Dr. Robert 
Simson, Professor of Mathematics in the University of Glasgow. 
It comprised the first six books of Euclid, some ofthe eleventh 
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book and two propositions of the twelfth. A favorite text is 
that of the late Prof. Todhunter, which is founded on Simson's. 
On the continent Euclid has not been so strictly followed as 
in Great Britain. Our American treatises on Elementary 
Geometry are generally modelled after the French, a lal'ge 
number of them being merely adaptations of the work of the 
amiable and great Legendre. 

The "Elements" of Euclid consisted of thirteen books, to 
which were added two others, on the five regular polyedra, of 
which the Alexandrian, Hypsicles, is supposed to have been 
the author. Euclid was both a collector and an originator. 
No means exist of discriminating exactly the two parts of his 
work. We have seen that certain prop~sitions had been dis
covered before him. How many more of those which are 
gathered in his collection were due to others we cannot say. 
"Euclid," says Proclus, "put in order many things discovered 
by Eudoxus, perfected what Theaetaetus had begun, and de
monstrated more rigorously what had previously been too 
loosely proved." 

The first book begins with the definitions, the postulates, 
and the axioms. Here Euclid is laying the foundation of his 
science, and just here does he meet with the largest amount of 
cavil on the part of critics. There is certainly ground for ob
jection to some of his statements, but a discussion of them 
would be out of place here. A domain far beyond the ken 
of Euclid's restrictions has been glimpsed after two thousand 
years by the inventions of Hamilton, Grassman, and others. 

The first proposition is the problem to describe an equilateral 
triangle on any sttaight line as a side, and the first theorem is 
as to the congruency of two triangles which ha~e two sides 
and the included angle of the one equal to ths corresponding 
parts of the other. The book ends with the Pythagorean 
theorem and its converse. The second book treats of the re
lations betwt:'en squares and rectangles formed on certain lines 
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and their segments. It contains two problems-to divide a 
line into extreme and mean ratio, and to describe a square 
equal to a given rectilinear figure. Stated algebraicaily, the 
first problem is to find x so that a (a-x)Xx2 or x L f-ax=a2, 

and so it involved the solution of one form of a quadratic 
equation. The third book is on the circle. The fourth book 
consists entirely of problems on the inscription and circum
scription of circles and polygons, including the problem to 
construct an isosceles triangla, having each angle at the base 
double of the angle at tho vertex, which is used in inscribing a 
regular pentagon in a circle. The fifth book is devoted to Eu
clid's celebrated treatment of proportion. The essence of the 
treatment lies in the definition of proportionality; and its 
superiority consists in the generality which flows from this 
definition, and renders the method applicable to incommensur
able magnitudes as well as to commensurable. The sixth book 
contains a number of theorems and problems involving the ap
plication of proportion. So far the enunciations are all for 
figures in one plane. Books seven, eight and nine are on 
Arithmetic. Book ten is on incommensurables. Books eleven, 
twelve and thirteen are chiefly on Solid Geometry. 

The Data of Euclid comprised, according to Pappus, ninety 
propositions; in the extant editions ninety-five propositions are 
included under the designation. Dr. Simson has left an edi
tion of these also. The Data were propositions in which it is 
required to prove that certain things being given certain 
others may be determined-that is are potentially given, since 
involved in the hypothesis. The work was intended as a kind 
of supplement or appendix to the elements, designed to facili
tate the application of the principles contained in them to the 
solution of problems. 

As examples, we may cite: 
"If from a given point a line is drawn, touching a circle 

given in position, the line is given in position and magnitude." 
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And (Prop. 6), "If two quantities are to each other in a given 
ratio, the quantities compounded of the two shall be to each 
other in a given ratio." 

Among the lost works of Euclid of which we have record 
are: Two books on Plane Loci, four on Conics, and three on 
Porisms. Simson thought that the books on Plane" Loci treat
ed of curves of double curvature, an opinion which was shared 
by the historian, Montucla. Chasles, in the introductory lec
ture delivered upon the inauguration of his course in Higher 
Geometry at Paris, took the view that they treated of surfaces 
of revolution of the second degree and the sections of them by 
planes-with whom M. Marie, in his recent history of Mathe
matics, agrees. 

Pappus says that Euclid wrote four books on Conics which 
formed the basis of the great work of Apollonius, the "Sub
lime Geometer." Apollonius in his letter transmitting his trea
tise to Eudemus, says that in his first four books he had elab
orated that which had been done before him, and especially 
mentions a certain problem which had been solved by Euclid 
only in a special case. We have, however, no information 
which enables us to speak with any degree of certainty of the 
content of Euclid's work. 

The Porisms of Euclid present one of the profoundest of 
mathematical enigmas. What did Euclid mean by a Porism, 
and what were the propositions which he enunciated under that 
name? Commentators and editors, among them some of the 
brightest of geometers, have essayed the solution of this ques
tion. Albert Girard, in the first half of the seventeenth century 
expressed the hope that he might restore the lost Porisms, and 
Fermat, a little later, touched upon the same subject. In 
1776 appeared a posthumous work of Simson's, "De Porz'sma
tibus tractatus,' quo doctrinam Porismatum satis explicatam d ilt 

posterum ab obl£vione itttam fore sperat Auctor." In our own 
century the great Chasles has made a brilliant effort at the 
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re-establishment of the lost work in his" Trois Livres de Por
ismes d' Euclide retablis, etc." 

Our definite information concerning Porisms is found 111 a 
notice given by Pappus in the seventh book of his "Mathema
tical Collection," and a brief mention by Proclus in his com
mentary on the first book of the elements. Pappus says that 
the Porisms of Euclid were an ingenious collection of a number 
of propositions, serving for the solution of the most diffi
cult problems; that the ancients defined Theorem, Problem and 
Porism as propositions respectively in which it is required to 
prove, to construct, and to find something. ProeIus gives a 
similar definition of Porisms which, he says, occupy a place 
intermediate between theorems and problems. Simson defined 
a porism as "a proposition in which it is required to show that 
one thing is given, or several things are given, which, as well 
as anyone of an infinite number of other things not given but 
of which each one bears the same relation to the given things, 
have a certain common property described in the proposition." 
Playfair, professor of Mathematics in the University of Edin
burgh, in a memoir suggested by Simson's work, defines por
ism as "a proposition affirming the possibility of finding such 
conditions as will render a certain problem indeterminate or 
capable of an infinite number of solutions." Chasles, after 
noticing the other attempts at the definition of a porism, pre
sents this one: "Porisms are incomplete theorems expressing 
certain relations between variables following a common law." 
Pappus states that there are thirty-eight Lemmas for the three 
books of Porisms, from which are deduced one hundred and 
seventy-one theorems. 

We believe that this perplexed problem has been still more 
obscured by the attempts at its elucidation. We believe that 
those who have attempted to give a definition of "Porism" have 
been groping around in the dark for what was not there. The 
name by which Euclid designated the propositions in question 
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-;;:(),f)!(J/W (gain, extra acquisition)-is the same as that applied 
to the immediate deductions from theorems which we translate. 
"Corollary" There is no notice of any definition of Porism 
given by Euclid; that which Pappus quotes, he attri
butes to "the ancients." We believe that Euclid in calling 
these propositions Porisms was not intending to distinguish 
any essential characteristic resident in all the enunciations, but 
simply labeling them as, like the Corollaries, "additional pro
positions"-a "gain" from previously deduced theorems. 
We do not think that Euclid intended to apply the name 
Porism to a class of propositions distinct, in some mystel'iolls 
and hitherto inexplicable way, from both prop')sitions and 
theorems. No rational explanation of Porisms has ever been 
offered which did not include them under the one or the other. 
Pappus, in his notice of them, quoted above, calls them 
"theorems." Simson says, "A Porism is a proposition in which 
it is required to dt'1nomtrate, etc.," and this, according to the 
definition in Euclid's Elements, certainly constitutes a theorem. 
Chasles, we have just seen, defines them as "incomplete the
orems. The diversity of expression among geometers who 
have discussed Porisms is due to an effort to frame a definition 
which shall comply with Pappus' representation of them as dif
ferent in some way from both theorems and problems, and 
shall be compre.hensive enough to include under it all the cases 
in question. The probability that Euclid used the word Por
ism in the sense which we have suggested is increased by the 
consideration that Diophanttls gave the same title to a treatise 
of his having no connection with geometry, and to which ac
cordingly the definitions of Porisms ordinarily given could not 
apply. A writer on the subject, speaking of the work just 
cited, says: "These propositions are not, however, all similar in 
form, and we cannot by means of them grasp what Diophantus 
understood to be the nature of a porism." Is is not probable 
that these were simply additional propositions suggested by the 
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line of thought contained in his great Arithmetic, and that 
he meant no more in calling them porisms? 

In subject matter the Porisms were what Euclid might have 
called a "Modern Higher Geometry;" they contained, among 
other things, the elements of the theory of tra.nsversals and 
some properties relative to the anharmonic ratio of four points, 
and thus were an anticipation of what is known to-day as 
Modern Higher Geometry. 

The following are some of the authorities for the period treated of: 
Diogenes Laertius' Lives of Philosophers--written in second century. 

Uncritical in spirit and unscientific in mel.hod, but interesting in matter. 
Pappus. Lived at Alexandria in fourth century. His "Collection" in 

eight books gives results attained by previous mathematicians, together with 
original discoveries. Very important. 

Produs. The Neo-Platonist, bn. at Constantinople, 4I2 A. D. Studied 
at Alexandria. Wrote a commentary on first book of Euclid's Elements. 

Ueberweg's History of Philosoph. §§I2, I6. 
Grote's History of Greece, Vol. II., c. 37. 
Marie's Histoire des Sciences Mathematiques et Physiques, Vol. I. Re

cently completed in twelve volumes. (Gauthier-Villars, Paris.) 
Chasles' Les trois Livres de Porismes d' Eudide re'tablis. (MalIet

Bachelier, Paris.) 
Encyclopaedia Britannica, articles, Thales, Pythagoras, Geometry, Porism. 
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A NEW ELEMENTARY DEMONSTRATION OF THE 
PYTHAGOREAN THEOREM. 

By DR. WILLIAM B. SMITH, COLUMBIA, Mo. 

From each of two congruent squares cut away four con
gruent right triangles; of the one there is left the square on 
the hypoteneuse of the right triangle; of the other, two squares 
on the legs of the right triangle; hence tke truth of the propo
sition.* 

*[The above demonstration of the Pons Asinorum is so good and simple 
that it is difficult to believe it new. We are inclined to think it is, if for no 
other reason than that Todhunter in his Edition of Euclid's Elements in re
marking on the Theorem in the notes, gives there as the most interesting of 
the many demonstrations one in which any two unequal square" are llsed 
and the proof is not so good as the above. 

The largest collection of demonstrations of this proposition seems to be 
a dissertation by Joh. Jos. Ign. Hoffmann, entitled "Der Pythagorische 
Lehrsatz ... Zweyte ... Ausgabe. Mainz, r82[. This we have not been 
able to examine.--(Eds.)] 
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SOLUTIONS OF EXERCISES 

1. 
Two vertices A and B of a triangle ABC describe straight 

lines which meet at the angle (I); show that the area of the 
curve described in their plane by the vertex C is 

fJ=ti! (a2+b2+c2-4.6 ct (I)). 

.6 being the area of the triangle ABC. [w. H. EcllOls.] 

SOLUTION. 

Let the paths of A and B meet in I. 
In any position of A B draw the cir-cum circle A B I cen

tered at 0 whose radius is r. Put C 0=8. 
Then the path of C is an ellipse whose semi-axes are 

~+r and 8-r. eSc. B., Vo1. I., No. I.) 

Join 0 A and OB, let 0 A B=a. 
Then 

The triangle 0 C A gives 

b2 = r2+b2-ub co (A +a), 
= ,a+ b2-2r b co (ti!+ A -(I), 

= r2+b2-2rb si (A-(lJ). 
The triangle 0 C B gives in like manner, 

b2 = ,-2+ fiJ-2r a si (B-cu). 

Whence results 

2(82-r2)=a2+b2-2r[b si (A-cl))+a si (B-(I))], 

=fiJ+b2 

-ar[co w(bsiA+a si B)-si w (b co A+a co B)], 

= a2+02-~[2k co (I)-csi (0]. 
SI (I) 
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Since C=2r si co, b co A +a co B=c, b si A=a si B=h. 

Hence JJ= n-((~+r) (S-r) =n-(S2_r2), 

= tn- { a2+b2--~[ 2h co w~c si (v] } 
Sl (/) 

=-?rn-(a 2 +b 2 +c 2 -2clz ctw), 

= -?rn(a2+b2+c2-46 ctw). 

Since ch is double the area of ABC. [w. H. Echols.] 

3. 

Two parallel straight lines are distant apart d; it is required 
to unite them by two circular arcs oj given radii which shall 
have between them a common tangent of length t. 

[Elmo G. Harris.] 

SOLUTION. 

Let L be (the length of the cross-over) the distance between 
the points of contact with the parallel tangents measured paral
lel to them. 

Let Rand r be the radii. Join the centers of the 
and call (I. the compliment of the angle which this line 
with t. 

Then 

circles 
makes 

It is easy to see that the central angles of the two arcs are 
equal, each represented by 1J, say. 

Then L=(R-+r)si6+tcod, (I) 

d (R+r)(l-co6)+tsi6, (2) 

or (d-R-r) = tsir'-(R+r) co 6. (3) 

Square (I) and (3), add them and reduce the result to 

L2-t2 =2d (R+r)-d2 • 

This gives the relation between Land t, either may therefore 
be furnish~d with the data. ' 
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Hence 
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. + ') L ta VI. 0 =----, 
R+r-d 

ta a+ta rI 
-r-ta i'l ta r;." 

ta 0= L (R+r)-t 
R+r+tL' 

This solves the problem. If the radii are equal we have the 
familiar railway engineers' cross-over, and the results are 

L2-t2=4dR-d2, 

t ' 2R L-t ao-
2-R=---t-CL=-· 

[Elmo G. Ha17'is.] 
[Also by TV. O. Whitescarnerand Charles PlI7:ycar.] 

5. 
Two straight lines 0 P and 0 Q are of lengths b' and a re

spectively. From P a perpendicular P M is drawn to 0 Q and 
equal to it, cutting it at N. Show that the equation to the lo
cus of P, as the point N moves on 0 Q and the point M on 
Q M, referred to 0 Q and 0 P as axes of ~\' andy respectively, is 

.,\,2 y2 

a'2 + b'2=I. [TV H. Eclzols.] 

SOLUTION. 

Let P' N' M' be any position of the moving line. Let the 
angle between M 0 produced and P Q be (t). Find the equa
tion to the locus of.P' referred to these as axes of y' and .x' 

respectively. Thus, drawing the ordinate P' A y', the tri
angles 0 N' M' and N' P' A give 

or 

o N'+N' A_M' N'+N' P 
-N~-- N'P' 

b' , . 
N' A= ;:t' 51 fI. , 

a' 
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where a=POQ. 

The triangle N' P' A gives 

N'P'2= b'2 sFa = y'2+N'A 2+ 2 N'Ay co w, 

b' <) I ') ~ 2 b' ~.' , 
_ '2 + - x - SI (1 + 2 co W SI a x y -y '2 .- , J 

a a 

or b'2 ·2 b' . '2+ SI (J. '2+ 2 co w S1 a " b'2·2 Y --'-2- z , zy = SI fl., 
a a 

as the equation to the locus referred to 0 Q and 0 M. 
form this to the axes 0 P and 0 Q as y and x axes, 
transformation formulae 

, si (w-a) 
,~ = z + y ---'~.:----'

S1 (IJ 

and divide through by si 2a. 

Thus the equation to the locus is 

si a 
y=y-. -, 

SI (IJ 

Trans
by the 

'2 ·2( 0.) s· ( ) a'2 b'2=~ y2+b'2 [z2+ 51 ~-. )'2+2 1 ~O-IJ. xy] 
512W 512(0 51 (0 

+ 'b' ( x Y 2 5i ( w-'-o.) J 2a co w -. -+y . . 
51 W SI 2 (0 

2 area 0 P M = a' b' co fl., 

also = 0 M·OP si (rr-w+fI.), 

or b'2 co (J. si (rr-w+a) 
co w 

Therefore . ( ) a' SI W-(J. = -71 co (0. 

Substituting this value in the equation above, it reduces read
ily to the required form 

a'2 y2+b'2 x 2 = a'2 b'2. 

[Charles P. Echols.] 
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6. 

Regarding the portion of the tangent to the hyperbola inter
cepted by the asymptotes as one diagonal of a square, what are 
the loci of the extremities of its other diagonal? 

[W H. Echols.] 

SOLUTION. 

Consider the point on the convex side of the curve, its dis
tance from the tangent is evidently equal to the semi-diameter 
conjugate to that drawn through the point of contact (x', y') of 
the tangent to the hyperbola. 

Let r be the a.ngle between these conjugate diameters of the 
hyperbola, whose center is 0, and p the distance of the point 
whose locus is sought from O. Refer the locus to the axes or 
the hyperbola as coordinate axes. 

The equation to the hyperbola is 
b'2 x'2-a2 y2 = a2 b2. 

The relations between the diameters are 

a'2+b'2 = a2+b2, } 

a' b' si r = a b. 

From the triangle (00, x y, :>/ y') we have 

p2=.x2+y2 =a'2+b'2_2a' b' si r, 

(1) 

(2) 

.'. X2+y2 =.a''2+b'2_2a b. - (3) 

Combining (1), (2) and (3}--we have 

But 

and 

Hence 

'2 b2 [9+ 9 ( b' 2] Y = 2(d+~) x- y-- a- ) • 

£2= 2(~~~) [X2+y2+ (a+b)2J. 

(X-X')2+(y_y')2 = b'2, 
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Which squared gives 

,,; x'2+1-y'2_t(x2+I+a2_b2/ = -2X y x' y'. (4) 
The equation of the normal is 

a2 z y' +b2y x' = (d+b2) x' y', 
which when squared is 

a 4 x2y'2+b4y2 z'2-(a2+b2?x'2 y'; = -2a2 b2 x y x' y'. (5) 

Combining (4) and (5) to eliminate x y x' y', and substituting 
in the resulting equation the values for X'2 and y'2 as obtained 
above we readily reduce the equation of the locus 

., 2 

~-- Y '-1 
(a-bl (a+b)2 - , 

In like manner the equation to the locus of the other ex
tremity of the diagonal would have been found to be 

x2 y2 
-;--=:.....,=:- = I. (a-t b)2 (a-b)~ 

[w. H. Eclzols.] 
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EXERCISES. 

7. 

On the sides of a triangle T, equilateral triangles are des
cribed, all outwards or all inwards. We thus get two new tri

angles T1• T 2• Show that 

(I). J 1+J2 = 5J , 

where .;1, .11. L/2 are the areas. 

(2). The maximum inscribed ellipses of Tl and T2 are con
focal. [Frank Morley.] 

8. 

In the Cassin ian r rl = h2 the angle between the central 
radius and one focal radius is equal to that between the other 
focal radius and the normal. [Frank Morley. ] 

9. 

Solv<; the equations 

.1..2+yz =a.x+bc, 

y2+Z x = b y+c a, 

Z2+ xy = c z+a b. 

10. 

[Frank Morley.] 

A 100 foot steel trtpe is longer than standard, so that at a 
certain temperature the tape measures a horizontal chord of 
100 standard feet under a pull of 16 pounds supported at its 
ends. Find the pull that will give 40, 50 and in general 
D « 100) standard foot horizontal chords, at same temper
ature, when the tape is supported at each end of the 40, 50, D 
foot graduations. [w. O. Whz"tescarver.] 
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11. 

A particle is set free at the highest point of a smooth sphere 
which stands .on a horizontal plane. The particle slightly dis
turbed begins to move in a certaim, direction, where does it 
meet the plane and what is the duration of motion? 

[Elmo G. Harris.] 

1'> .;.J. 

A smooth tube bent to the shape of a semi-ellipse is fixed in 
a vertical plane, its major axis horizontal, its semi-minor axis 
upward. A heavy flexible string passing through the tube and 
hanging ot rest is cut at one end of the tube. What is t.he ve
locity ofthe string as it leaves the tube? [W H. Echols.] 

13. 

Given on the ground a circular c.urve of known radius inter
secting a given straight line at a given point and given angle; 
it is required to unite the two by another circular curve of 
given radius. [W H. EcllOls.] 

14. 

Given on the ground a ci(cularcurve of known radius inter
secting a given straight line at a given point and given angle; 
it is required to unite the two by another circular curve of 
given radius in such a ma.nner as to have acommQn tangent of 
length t between the curves. [W H. Echols.] 

15. 

[W H. Eckols.] 
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SELECTED. CONSTRUCTIVE PROBLEMS J:'(f ELEMENTARY GEOMETRY. 

16. 

Construct the triangle ABC which is similar to the given 
triangle L M N and which projects orthogonally upon a plane 
into the given triangle A' B' C. 

17. 

Of the three concurrent edges a, b, c of a cube, the orthogo
nal projections on a plane a', b' of two are known, it is required 
to construct the projection of the cube. 

18. 

Of the three concurrent edges a, b, c of a cube, the ortho
gonal projection on a plane, a' of one and the directions of the 
projections of the other two are known, it is required to COIl· 

struct the projection of the cube. 

19. 
Of the three concurrent edges a, b, c of a cube, the ortho

gonal projection on a plane a' of one, the lengths of the ortho
gonal projections of the other two are kno~n, it is required to 
construct the projection of the cube. 

20. 

Of the three concurrent edges a, b, c of a cube the ortho
gonal projection on a plane a' of one, the length of the ortho
gonal projection of another and the direction of the projection 
of the third is known, it is required to construct the projection 
of the cube. 
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IMAGINARIES IN ANALYTIC GEOMETRY, 

By DR. WILL-TAM B. SMITH, COTXMBIA, Mo. 

In Arts. 253-261 and elsewhere in the classic treatise of 
Salmon on Conic Sectio1lS, as well as in other works of like 
scope, will be found a number of analytic properties of the' 
binary quadric, or General Equation of second degree in 
Cartesian resp. trilinear coordinates, interpreted geometri
cally in terms of irnaginary points and right lines, whether in 
finity or at infinity. The formal correctness of these interpre
tations is, of course, not to be questioned, but it is equally 
manifest that the visible geometric depiction is altogether 
inadequate to express the relations under consideration. 

By use of the quadrantal versor i as an operator, to denote 
the turning of an ordinate y through a right angle into pl"rpen
dicularity to the plane of X Y. Mr. Carr,in his Synopsis of 
Pure Mathematics. enlarges measurably the range of geometric 
representation. Thus the Equation 

? " .) x- . )'- ""-.::~ a-. 

for 

is depicted by a circle of radius a about the origin; the axes 
being rectangular. For .t' lying outside of these extremes the 

valu'e of y is il,,\,2 a:x: and the geometric picture is according

ly an equiaxal Hyperbola having the same parameter and real 



2 S:VIITH. LliAGINARIE::i l~ ANALYTIC GEOMETRY. 

axis as the circle, but in a plane normal to X Y along X. If 
now, for convenience, this Hyperbola be rotated about X into 
the original plane X Y, whereby the foot of the ordinate y 
will not be changed, in this new position it is called, following 
Poncelet, sltpplementm:l' to the circle as priluipal. In general 
the two curves 

are principal and supp.lementary. Mani festly, supplementaries 
to the same principal will vary with the choice of conjugate 
diameters for coordinate axes. 

With help of the supplementary curve, many puzzling pro
perties of <onics, such as 

All circles meet in the same two imaginary points at 
infinity; 

Concentric circles touch in four imaginary points at infinity; 
All confocal conics have four common tangents imaginary 

and determining four foci, two real, two imaginary, as two 
pairs of their opposite intersections; . 
and the like, may now be interpreted geometrically and vIsibly. 

Two reflections, however, suggest themselves. By turning 
the perpendicular curve into the plane X Y and then using its 
properties to supplement the properties of the principal, we 
seem really to surrender the problem of interpreting our 
analytic properties through the circle and to say in effect. "We 
can not understand these of the visible circle, but we may un
derstand them of the visible hyperbola." Accordingly, the 
problem of rendering these properties, when affirmed of the 
circle, intelligible to intuition, seems scarcely to have been 
met and solved but rather ~vaded. The burden which proved 
too heavy for the principal shoulder has been shifted to 
the supplementary one. Thus, when asked to s;i}rinW:'l!la.'t 
sense the circle 
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has a pair of imaginary asymptotes 

we make answer that the supplementary hyperbola 

A·2+y2= a2 

has a pair of real ones 
.) ') X"-y-= o. 

The answer is indeed quite correct, but not quite relevant. 

3 

Again, in dealing with extra-real values of the coordinates, 
either of two ways seems logically open: to admit all or to ad
mit none. Choosing the latter, we must say of the Asymptotes 

X2+y2=0 

simply that they arc /lot, no finite real values satisfying their 
Equation; this latter is accordingly a mere analytic symbolism 
void of geometric content. This answer is entirely correct 
and consistent, involving no internal contradiction. So with 
respect to imaginary points of intersection of conics, we may 
say curtly there art' no s?tc/z poillts and so end the discussion. 
But if we choose the other path and admit any imaginary 
values to equal rights with real ones, then we must admit all, 
"for there is no difference." Any reason which legitimates 
the value £ for y in ;\,2+y2= I fuust legitimate the same value 
for ..t' and the general value a+ i b for both. The fact is, so 
soon as the ditensive unit i is r-:cognized at;111 the domain of 
number becomes a manift:ld doubly extended and is no longer 
to be pictured by a continuity of points along a single axis as 
X or Y, but requires a surface, as a plane, for its complete de
piction. Very naturally, then, the geometric interpretation of 
the Equation in ;t' and y, where each may be of the form a+i b, 
as a curve in the plane X Y, while quoad perfect, is yet incom
plete, for there is no place on either axis for the geometric 
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picture of an imaginary value, and hence no place in their 
plane for the picture of a pair of such values. Evidently, then, 
if we would interpret the Equation completely, we must con
struct the values of the coordinates completely: we must as
sume two planes, instead of two axes, of .\' and y. In each of 
these planes we assume two axes at right angles, the one of 
pure reals, the other of pure imaginaries. For convenience, 
suppose the planes perpendicular to each other, then in gener
al we shall have fo~r mutually perpendicular right lines, which 
are possible only in at least four-fold space. Such a space, 
though perfectly reasonable, is not imaginable, our intuition 
reaching only to three dimensions. Our equation constructed 
in this space would yield a solid as a border between two 
four-fold extent, and while amenable to analytic treatment 
would still defy envisagement as effectually 
as did our imaginary elements in the original plane. 
However, there is nothing to prevent our assuming two axes 
of reals at right angles, and a third axis normal to their plan e 
at their intersection as the common a.\'is of pure imaginaries. 
If this be -named the Z-axis. then the whole domain of value 
of x will be geometrically the X Z-plane, and of y, the 
Y Z-plane. Now put 

.';=1I+i u' and Y='71+~' 11' ; 
then these two points (If, z/), Vu, ,/), in X Z and Y Z, are two 
opposite vf'rtices of a parallelogram, of which the origin and 
the point (x, y) are the other pair of vertices. The rectangular 
coordinates of this point (x, y) arc plainly u, 'ZI, ,/ + ,/, or U. 71, Z, 

all of which are always real. To any pair (x, y) corresponds a 
triplet (u, 1'. z); accordingly the complete depiction of the 
equation in x and y, when complex values are admitted, will be 
the perfect depiction of the corresponding equation in u, v, z 
when only real values are admitted. This latter will of course 
be a surface in the space of ?t, ZI, Z. It remains to transform 
the Equation in X,)' into an equation in 71, 7.1, Z. 
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The General 

\i:her:cc 

and 

of first tlegree in.\" and y is 

JH)'+7i",,- 0; 

I u' m 'Z';· II 0, 

/ 1/ -,- Iii ,.' c,", 0 

( I ) 

(2 ) 

(3) 

(4) 

Equation (3). independent of :l, is that of a plane parallel to Z, 
its trace on the plane U V being the right line 

IN' HZ {'-i'll ,ce.: O .. 

Equation (41 does not limit in any way the total locus of U). 
but dcclart~s bow the ::: of 'each point of the locus is set 
together out of Ii' and zi. liere the constants I. 111., 1Z ·have heen 
supposed real, as is uniformly done in discussions of this equa
tion. But that supposition is by no means a necessary one. 
H we attribute to them the most general values, 

i?-' i a', iJ-;i h', c -i c', 

then result the eq uations 

II' U .. b' " ~ / : a u' . b 'Z" 0 

It' " .,0' O. 

wl,1ence, eliminating If' and;,', we have 

a 7/' T " , ~-·-~-a'" --b', 
, /' 

, 
b a N---' (1 '£.I t' fl, , 0, or 

Z, ----I, -'J, 

b":'P -d b')</+(a' b-ab'):; 
·j<1c·-bc; a'c'-· .. , 

equation of a not,itt perpendicular 
origi!lal pialle U .Examples such oblique . 
hereafter ptesentthemselvesl Omitting at this point 

also, 

0, 

to the 
win 

further 
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discussion of this equation, let us pass to Equations of second 
degree. Of these the simplest is that of the circle about the 
origin, 

Or 

wheace 

and 

2") ") x T)'- .. ;;:::a-. 

(u+ i u') 2 +(v+i 1/) 2= a 2; 

112 +'il2_(U'2 +-v' 2)= a 2 , 

u "'-ttl v',=o. 

From (7) and u'+v'=2' there result 

, UZ , l/ ;:. 
',Jz:.::: __ , U 0.'-'-"-'-'" 

U-1' U--'V 

whence, on substitution in (6) and reduction, 

(U~+V2) (u-z,?-z2]-a 2(u- zl) 2~:;:;; 0, 

a surface of fourth degree. 

(5) 
(6) 

(j) 

To get a clearer idea of this quartic let us introduce polar 
coordinates by the relations 

U:= ,o~, ,lc= P (~I ' 

where!! and 19,/ stand for cosine and sine of 8, the inclination of 
p from U-axis. Then (9) becomes, on rejecting p2, 

(I 0) 

Here (!!-8t)2 is a pure number positive and constant for 8 
constant; call it k 2 ; then, taking p and z as coordinates of the 
curve of section of the surface with the plane through Z sloped 
t9 to U, we have, as its rectangular equation, 

(I I) 

an Hyperbola, or, for varying 19, a family of Hyperbolas. The 
parameter of this fami~y is k 2; the real axes are all 2 a and 
form the pencil of diameters of the circle 

u l +f!~= a~; 



SMITH. IMAGIN.-\'RIJ<:S IN .-\;)!ALYTIC GJ<:OMJ<:TRY. 7 

for /}:= a the conjugate axis is 2a, the hyperbola is equilateral; 
as (~ increases to 1-;:- the conjugate axis shrinks to 0, the hy
perbola flattens to a doubly laid right line bisecting outside of 
the circle the angle U 0 V: as IY goes on increasing to t;:-, k2 

passes through the same system of values, yielding the same 
system of hyperbolas, in opposite order; for !J increasing to 
t:;:-, k2 rises to its maximum, 2, thence for !J increasing to 11: 

it once more sinks through opposite stages to its original 
value, I. Herewith the circuit of its values is complete and 
is merely repeated as /J passes from :;:- to 21':. Accordingly, as 
a plane turns about z it cuts the surface continually in an Hy
perbola, with vertex on the circle 

with constant real axis 2a, and with conjugate axis ranging 

continuously from 0 for d= 1-" or t;:- to 2a}/ '2 for t?=~1I: or 
t". The surface is symmetric with respect to two planes bi
secting the angles of the real axes, U and V, as becomes an
alytically clear on turning the axes through an angle, -t1l:;it 
consists of two halves compendent along the inner bisector. 
zt= 'l!. 

Now suppose a= 0; the circle reduces to the point-circle 

~+y~=o, 

which is also the pair of imaginary Asymptotes 

(x+iy)(;\·-iy)= o. 

But a= a reduces our equation (9) to 

(12 ) 

Of these the first is pictured completely by the origin, iince N 

and v are expressly real, the second breaks up into the two 

disjunctive equations 

U--l/-$= 0 a.nd u-t/+z=o. 
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These'arc'depicted by two planes meeting on the right line 
U-'ZJ ' 0, bisecting the coordinate angle U 0 V; the first also 
bisects the anJ'Tk V 0 Z; i. c., the planes bist'ct the c,-,,:,r,Lnatc 

<> 

angle U 0 V of the original axes and arc iJlcli!1ed, c,!ch ,;t all 

angle whose tangent is 2, to the plane of thus!.: axc;. Ajsu, 
the 'plane turning about ;" cuts this pair of planes in. the curve 

(r 4) 

z'. e., in the pair of right lines 

k ,o-z:=:= ° and k p+ ::;",c 0. 

But tHese right lines are plainly the Asymptotes to the section 
of the surface made by the rotating plane, namely, to the Hy
perbola 

'- I6) 

Hence we see that the loclIs 

, .. ..;. 

, isgenJ..t.inely arid completely asymptotic to the locus 

,t '.. ~'. • ~. 

": !, 

; ev<!~y:.rcctilinear radial section of the first being asymptotic to 
,t~e GOolll'Csponding hyperbolic section of the second. 

Now change the sign of a2; then results the purely imagin
_ ary -circle 

Its complete spatial depiction is obtained at once by changi ng 
the sign of a2 in the foregoing reasoning; the, asymptotic 
J>t~~es are unaffected; while all the 'hype~bolas pass, over ~nto 

.': ' t ,4 , ',. ", ~ . . . • , ' " 
~h~ir conjugates, 'Thus the, imaginary cirele stands to the real 
~1e-'j notoruy: analyticdy but aloo visually." precisely as the 
~oojuk.t~ hyperb~ st.mi$toitspnm.try, tlieone being quite 

i ~ l." " , 
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as "real" as the other, and both having the common real asym
ptotic planes 

,7t,2+y2=0. 

The complete spatial depiction of the real and (so-called) im
aginary ellipses, 

,;,(2 y2 

a2+-b2=±I, 

is now easily apparent. It suffices to supplace y with ~ y m 
a 

in the foregoing. The general relations remain undisturbed. 

Let us now pass to the rectangular hyperbola, 

x 2-y2=a2 P7) 

Proceeding as in case of the circle we obtain 

(u2_v2) [(U+V?+Z2] -a2(21+lI)2= 0, (18) 

or 

an Ellipse in the plane through Z turned I~ from U, with center 

at origin, one axis 2a/Vt~2-/j,2, the other 2a(!!.+ lJ,)/l/~2_I~f"}' 
For iJ= 0 this ellipse be carnes a circle with diameter 2a; as I~ 

increases both axes increase, the second the faster, which is 
therefore the axis. major, until for 1~=tiI' both become infinite. 
For if ranging from tiI' to tiI' the sections are strictly imaginary 
ellipses, since both p and z are expressly real; z'. e., no part 
of the real surface lies in this quadrantal region. As r'f in
creases from tiI' to iI', the s.ection, once more real, shrinks from 
an infinite ellipse to the initial circle, radius a; and herewith 
the circuit of values is complete, to be retraced as I~ ranges 
from iI' t02iI'. The minor axes of all these real elliptic sections 
are the primary diameters of the hyperbola under considera
tion. 'The Asymptotes 

Z2_y 2= 0 =(x-y) (x+y) 
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are two planes through Z bisecting outerly and innerly the 
original coordinate angles and touching the surface at infinity 
all around along the infinite ellipse. 

Now change the sign of a 2 ; the hyperbola passes over into 
its conjugate 

all the elliptic sections which were real for a 2 , namely, all 
for I~ ranging from -tiT to -+-!-rr, now become imaginary, 
while all which were imaginary, namely, for H ranging from 
-}7i." to ~;r, now become real; and the Asymptotes remain the 
same. 

It is hardly necessary to detain the reader with further ex
emplifications. It seems entirely evident that the so-called 
imaginary points, lines, circles, ellipses, yea, curves and pro
perties in general, are no longer imaginary in the lNCUS tZ nOll 

IztCelldo sense of unimaginable, but that they exist for the 
spatial imagination altogether as genuinely as any of the rcaJs 
of Analytic Geometry. 

Further discussion is reserved for the presen t. 
Columhia, ;VIo., Aug. 11th, 1890' 
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OUR BELIEF IN AXIOMS, AND THE NEW SPACES. 

By DR. GEORGE BRUCE HALSTED, UXIVERSITY OF TEXAS. 

"Prove all things, hold fast that which is good," does not 
mean demonstrate everything. From nothing assumed, noth
ing can be proved. "Geometry without axioms," was a book 
which went through several editions, and still has historicai 
value. But now a volume with such a title would, without 
opening it, be set down as simply the work of a paradoxer. 

The set of axioms far the most influential in the intellectual 
history of the world was put together in Egypt: but really it 
owed nothing to the Egyptian race, drew nothing from the 
boasted lore of Egypt's priests. 

The Papyrus of the Rhind, belonging to the British Museum, 
but given to the world by the erudition of a German 
Egyptologist, Eisenlohr, and a German historian of mathema
tics, Cantor, gives us more knowledge of the state of mathe
matics in ancient Egypt than all else previously accessible to 
the modern world. Its whole testimony confirms with over
whelming force the position that Geometry as a science, strict 
and self-conscious deductive reasoning, was created by the 
subtle intellect of the same race whose bloom in art still over
awes us in the Venus of Milo, the Apollo Belvidere, the La
ocoon. 

In a geometry occur the most noted set of axioms, the 
geometry of Euclid, a pure Greek professor at the University 
of Alexandria. 

Not only at its very birth did this typical product of the 
Greek genius assume sway as ruler in the pure sciences, not 
only does its first effloresence carry us through the splendid 
days of Theon and Hypatia, but unlike the latter, fanatics can-
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not murder it; that dismal flood, the dark ages, cannot drown 
it. Like the ph~nix of its native Egypt, it rises with the new 
birth of culture. An Anglo-Silxon, Adelard of Bath, finds it 
clothed in Arabic vestments in the land of the Alhambra. Then 
clothed in Latin, it and the new-born printing press confer 
honor on each other. Finally back again in its original Greek, 
it is published first in Queenly Venice, then in stately Oxford, 
since then everywhere. The latest edition in Greek is just is
suing from Leipsic's learned presses. 

How the first translation into our cut-and-thrust, survival-of
the-fittest English was made from the Greek and Latin by 
Henricus Billingsly, Lord Mayor of London.. and published 
with a preface by J onh Dee the Magician, may bestudied in ~he 
Library of our own Princeton College where they have, by 
some strange chance, Billingsly's own copy of the Latin version 
of Commandine bound with the Editio Princeps in Greek 
and enriched with his autograph emendations. Even to-day 
in the vast system of examinations set by Cambridge, Oxford, 
and the British government, no proof will be accepted which 
infringes Euclid's order, a sequence founded upon his set of 
axioms. 

The American ideal is success. In twenty years the Ameri
can maker expects to be improved upon, superseded. The 
Greek ideal was perfection. The Greek Epic and Lyric poets, 
the Greek sculptors, remain unmatched. The axioms of the 
Greek geometer remained unquestioned for twenty centuries. 

How and where doubt came to look toward them is of no 
ordinary interest, for this doubt was epoch making in the his
tory of mind. 

Among Euclid's axioms was one differing from the others in 
prolixity, whose place fluctuates in the manuscripts, and which 
is not used in Euclid's first twenty-seven propositions. More
over it is only then brought in to prove the inverse of one of 
these already demonstrated. 
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All this suggested, at Europe's renaissance, not a doubt of 
the axiom, but the possibility of getting along without it, of 
deducting it from the other axioms and the twenty-seven prop
ositions already proved. Euclid demonstrates things more 
axiomatic by far. He proves what every dog knows, that any 
two sides of a triangle are together greater than the third. 
Yet when he has perfectly proved that lines making with a 
transversal equal alternate angles are parallel, in order to prove 
the inverse, that parallels cut by a transversal make equal al
ternate angles, he brings in the unwieldy postulate or axiom; 

"If a straight line meet two straight lines, so as to make the 
two interior angles on the same side of it taken together less 
than two right angles, these straight lines, being continually 
produced, shall at length meet on that side on which arc the 
angles which are less than two right angles." 

Do you wonder that succeeding geometers wished by de
monstration to push this unwieldy thing from the set of funda
mental axioms. 

Numerous and desperate were the attempts to deduce it from 
reasonings about the nature of the straight line and plane an
gle. In the "Encyclopcedie der Wissenschaften und Kiinste; 
Von Ersch und Gruber;" Leipzig, I838; under "Parallel," 
Sohncke says that in mathematics there is nothing over which 
so much has been spoken, written, and striven, as over the 
theory of parallels, and all, so far, (up to his time) without 
reacJ..1ing a definite result and decision. 

Some acknowledged defeat by taking a new definition of par
allels, as for example the stupid one, "Parallel lines are every
where equally distant," still given on page 33 of Schuyler's 
Geometry, which that author, like many of his unfortunate pro
totypes, then attempts to identify with Euclid's definition by 
pseudo-reasoning which tacitly assumes Euclid's postulate, e. g. 
he says p. 35; "For, if not parallel, they are not everywhere 
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equally distant; and since they lie in the same plane, must ap
proach when produced one way or the other; and since straight 
lines continue in the same direction, must continue to approach 
if produced farther; and if sufficiently produced, must meet." 
This is nothing but Euclid's assumption, diseased and contam
inated by the introduction of the indefinite term "direction." 

How much better to have followed the third class ·of his 
predecessors who honestly assume a new axiom differing from 
Euclid's in form if not in essence. Of these the best is that 
called Playfairs; "Two lines which intersect cannot both be 
parallel to the same line." 

The German article mentioned is followed by a carefully 
prepared list of ninety-two authors on the subject. In Eng
lish an account of like attempts was given by Perro net Thomp
son, Cambridge, I833, and is brought up to date in the 
charming volume, "Euclid and his Modern Rivals," by C. L. 
1 )odgson, late Mathematical Lecturer of Christ Church, Ox
ford. 

All this shows how ready the world was for the extraordi
miry flaming-forth of genius from different parts of the world 
which was at once to overturn, explain, and remake not only 
all this subject but as consequence all philosophy, all ken .. lol'e. 
As was the case with the discovery of the Conservation of 
Energy. the independent irruptions of genius, whether in Rus
sia, Hungary, Germany or even Canada gave everywhere the 
same results. 

At first these results were not fully understood even by the 
brightest intellect. Thirty years after the publication of the 
book he mentions, we see the brilliant Clifford writing from 
Trinity College, Cambridge, April 2, I870, "Several new ideas 
have come to me lately: First I have procured Lobatchewsky, 
'E'tudes Geom~triques sur 1a Theorie des Parallels' - a 
small tract of which Gauss, therein quoted, says: L' auteur a 
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traite la matiere en main de maitre et avec Ie veritable esprit 
geometrique. ] e crois devoir appeler votre attention sur ce 
li~re, dont la lecture ne pent manquer de vous causer Ie plus 
vifplaisir'. Then says Clifford: "It is quite simple, merely 
Enclid without the vicious assumption, but the way the things 
come out of one another is quite lovely." 

The first axiom doubted is called a "vicious assumption," 
soon no man sees more clearly than Clifford that all are as
sumptions and none vicious. He had been reading the trans
lation by Houel, published in 1866, of a little book of 61 
pages published in 1840 in Berlin under the title Geometrische 
Untersuchungen zur Theorie der Parallellinien by a Russian, 
Nicolaus Ivanovitch Lobatchewsky, (1793-1856), the first 
public expression of wh.ose discoveries, however, dates back to 
a discourse at Kasan on February 12,1826. 

Under this commonplace title who would have suspected 
the discovery of a new space in which to hold our universe and 
ourselves. 

A new kind of universal space; the idea is a hard one. To 
name it, all the space in which we think the world and stars 
live and move and have their being was ceded to Euclid as his 
by right of pre-emption, description and occupancy; then the 
new space and its quick-following fellows could be called Non
Euclidean. 

Gauss in a letter to Schumacher dated Nov. 28, 1846, men
tions that as far back as 1892 he had started on this path to a 
new universe. Again he says: "La Geometrie non-Euc1i
dienne ne renferme en elle rien de contradictoire, quoique, a 
premiere vue, beaucoup de ses resultats aient l'air de para
doxes. Ces contradictions apparents doivent etre regardees 
comme l'effet d'une illusion, due a l'habitude que nous avons 
prise de bonne heure de considerer la geometrie Euclidienne 
comme rigourous." 
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But here we see in the last word the same imperfection of 
view as in Clifford's letter. The perception has not yet ~om~ 
that though the non-Euclidean geometry is rigorous, Euclid is 
not one whit less so. 

A clearer idea here had already come to the former room
mate of Gauss at Gottingen, the Hungarian Wolfgang Bolyai. 
His principal work, published by subscription, has the follow
ing title: 

Tentamen Juventutem studiosam in elementa Matheseos 
purae, elementaris ac sublimioris, methodo intuitiva, evidentique 
huic propria, intrr)ducendi. Tomus Primus, r832; Secundus, 
1833. 80. Maros-Vasarhelyini. 

In the first volume with special numbering, appeared the 
celebrated Appendix of his son Johann Bolyai with the follow
ing title: 

Ap., scientiam spatii absolute 'l!eram exhibens: a veritate aut 
falsitate Axiomatis XI Euclidei (a priori haud unquam 
decidenda) independentem. Auctore J ohanne Bolyai de 
eadem, Geometrarum in Exercitu Caesareo Regio Austriaco 
Castrensium Captaneo. Maros-Vasarhely., 1832. (26 pages 
of text). 

This marvellous Appendix has been translated into French, 
Italian and German. 

In the title of Wolfgang Bolyai's last work, the only one he 
composed in German, (88 pages of text, 1851,) occurs the fol
lowing: 

"Und da die Frage, ob zwei '(Jon der drittctz gesclmittetlC 
Geraden 'Wentz die Summa der inneren JiVinkel lliclzt=2R, siclz 
sehneidetz oder nieht.'?, niemand auf der Erde ohne ein Axiom 
(wie Euclid das XI) aufzustelle'n, beantworten wird; die davon 
unabh<engige Geometrie abzusondern, und eine auf die Ja 
Antwort, andere auf das Nein so zu bauen, dass die Formeln 
der letzen auf ein Wink aueh in der ersten gultig seien." 
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The author mentions Lobatchewsky's Geometrische Unter
suchungen, Berlin, 1840, and compares it with the work of his 
son Johann Bolyai, "an sujet duquel il dit: 'Quelques ex
emplaires de l'onvrage publie ici ont ete envoyes it cette 
epoque it Vienne, a Berlin, a Gottingen. De Goettingen 
Ie geant mathematique, [Gauss] qui du sommet des hauteurs 
embrasse du meme regard les astres et la profondeur des 
abimes, a ecrit qu'il etait ravi de voir execute Ie travail qu'il 
avait commence pour Ie Iaisser apn~s lui dans ses papiers.' " 

Yet that which Bolyai and Gauss, a mathematician never 
surpassed iil power, see that no man can ever do, our Ameri
can Schuyler, in the density of his ignorance, thinks that he 
has easily done. 

In fact this first of the Non-Euclidean geometries accepts 
all of Euclid's axioms but the last, which it flatly denies and 
replaces by its contradictory, that the sum of the angles made 
on the same side of a transversal by two lines may be less than 
a straight angle without the lines meeting. A perfectly con
sistent and elegant geometry then follows, in which the sum of 
the angles of a triangle is always less than a straight angle, and 
not every triangle has its vertices con cyclic. 

Gauss himself never published aught upon this fascinating 
subject, but when the most extraordinary pupil of his long 
teaching life came to read his inaugural dissertation before the 
Philosophical Faculty of the University of Gottingen, from the 
three themes submitted it was the choice of Gauss which fixed 
upon the one "Ueber die Hypothesen welche der Geometrie 
zu Grunde liegen." Gauss was then recognized as the most 
powerful mathematician in the world. 

I wonder if he saw that here his pupil was already beyond 
him, when in his sixth sentence Riemann says, "therefore space 
is only a special case of a three-fold extensive magnitude," and 
continues: "From this, however, it follows of necessity, that 
the propositions of geometry cannot be deduced from general 



18 HALSTED. AXIOMS AND NEW SPACES. 

magnitude-ideas, but that those peculiarities through which 
space distinguishes itself from other thinkable three-fold ex
tended magnitudes can only be gotten from experience. 
Hence arises the problem, to find the simplest facts from 
which the metrical relations of space are determinable-a prob
lem which from the nature of the thing is not fully determi
nate; for there may be obtained several systems of simple facts 
which suffice to determine the metrics of space; that of Euclid 
as weightyest is for the present aim made fundamental. These 
facts are, as all facts, not necessary, but only of empirical cer
tainty; they are hypotheses. Therefore one can investigate 
their probability, which, within the limits of observation, of 
course is very great and after this judge of the allowability of 
of their extension beyond the bounds of observation, as well 
on the side of the immeasurably great as on the side of the 
immeasurably small." 

Riemann extends the idea of curvature to spaces of three 
and more dimensions. The curvature of the sphere is constant 
and positive, and on it figures can freely move without defor
mation. The curvature of the plane is constant and zero, and 
on it figures slide without stretching. The curvature of the 
two-dimentional space of Lobatchewsky and Bolyai completes 
the group, being constant and negative, and in it figures can 
move without stretching or squeezing. As thus corresponding 
to the sphere it is called the pseudo-sphere. 

In the space in which we live, we suppose we can move 
without deformation. It would then, according to Riemann, 
be a special case of a space of constant curvature. We pre
sume its curvature nulL It would then lie between the sphere 
and pseudo-sphere. At once the supposed fact that our space 
does not interfere to squeeze us or stretch us whcn we move, 
is envisaged as a peculiar property of our space. But is it not 
absurd to speak of space as interfering with anything? If you 
think so, take a knife and a raw potato, and try to cut it into 
a· seven-edged solid. 
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Farther on in this astonishing discourse comes the epoch
making idea, that though space be unbounded, it is not there
fore infinitely great. Riemann says: "In the extension of the 
space-construction to the immeasurably great, the unbounded 
is to be distinguished from the infinite; the first pertains to the 
relations of extension, the latter to the size-relations. 

That our space is an unbounded three-fold extensive man i
foldness, is an hypothesis, which is applied in each apprehen
sion of the outer world, according to which, in each moment, 
the domain of actual perception is filled out, and the possible 
places of a sought object constructed, and which in these ap
plications is continually confirmed. The unboundedness of 
space possesses therefore a greater empirical centainty than 
any outer experience. From this however the Infinity in no 
way follows. Rather would space, if one presumes bodies in
dependent of place, that is ascribes to it a constant curvature, 
necessarily be finite so soon as this curvature had even so small 
a positive value. One would, by extending the beginnings of 
the geodesics lieing in a surface-element, obtain an unbounded 
surface with constant positive curvature, therefore a surface 
which in a homaloidal three-fold extensive manifoldness would 
take the form of a sphere, and so is finite." 
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THE VOLUME OF THE PRISM OlD AND THE 
CYLINDROID. 

By PROF. W. H. ECHOLS, ROLLA, Mo. 

In estimating the volume of earth work in the construction 
of Lines of Communication, a particular solid has occurred so 
frequently that engineers have given it a specific name; the 
Prismoid. 

Whether the word was used to designate a definite geomet
rical solid prior to its adaption by engineers for that purpose, 
I have been unable to discover. The solid has been an ex
tremely interesting one to engineers and much has been writ
ten by them upon the subject of its volume. No small subject 
connected with the profession has probably received so much 
labor and attention as this, in the direction of facilitating the 
computation of the volumes of these earthwork solids. The 
impracticability of an exact result so far as designing a mathe
matical surface which should coincide with the natural surface 
of the terrain was early recognized, and all efforts in dealing 
with the solid have been in the direction I)f offering approxi
mate methods of computation, which yield results, the errors 
of which lie well within the limits which good practice demands. 

In the sense of facilitating the computation of earthwork 
solids it is not the writer's intention to write in the present pa
per anything of it practical nature upon the subject chosen, but 
rather to discuss it from a purely geometrical point of view, 
believing, however, that such a discu:.sion will contain matter 
which is not uninteresting to engineers, and which rtt the same 
time will be of practical benefit to them, insomuch as it will 
make more clear the advantages of the best methods now em
ployed ill practice for approximating to the volumes. 
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As to the practical feature of numerically computing the 
earthwork solids, that subject was shelved some fourteen years 
ago when Mr. Wellington and Prof. Davis published their 
works on Railway Earthwork*. It is because of a notice in 
the Engineering News of date, May 24, 1890, given to the 
second edition of the latter work, in which the Editor remarks 
"Weare astonished that the author should be so ill-read in the 
literature of his subject as to state in his preface: 'The result 
of the pn·smoidal rule isfor tlte first time obtained by a simple 
correction, without calculating the mid-section of these trouble
some solids.' By referring to p. 36 of Estimates of Railway 
Earthwork, by A. M. Wellington, published in 1874, he will 
find such corrections fully explained; and this was not the 
first.", that this paper was undertaken, the connection ap
pearing in the sequel. 

Both of these gentlemen base their methods of computc:tion 
upon the same formula which is obtained by each in the same 
way. The final result reached is the method now employed in 
practice which in a few words may be expressed as foHows: 
The mean area of the engineering prismoid is the average of 
its end areas, corrected when necessary. This correction is de
termined in each case, by computing the volume for three-level 
sections by the so-called prismoidal formula, then by the aver
age of end-areas, the difference being the desired correction. 

One in looking through engineering works cannot fail to be 
struck with the variety of definitions given to the prismoid 
solid, and in how few cases is the solid defined in a manner 
which fixes it in words which may be taken as a mathematical 
definition of the solid. As much as has been written about the 
prismoid in engineering journals in connection with the com-

~Computation from Diagrams of Railway Earthwork, A. M. vVellington. 
D. Appleton & Co., (1874.) 

Formulae for Railway Earthwork, John W. Davis. New York Gilliss 
Brothers Pub., [1877.] 
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putation of earthwork volumes, no fixed mathematical defini
tion of it has been agreed upon, and more or less confusion 
exists in the minds of engineers as to exactly what a prismoid 
is, beyond the definition given in the unabridged dictionaries 
where it is defined to be "a solid somewhat like a prism." 

For the purposes of the present paper we shall use a defini
tion for the prismoid which is derived from that given by 
Henck in his Fieldbook, Edition 1854. Where he says CIA 
prismoid is a solid having two parallel faces, and composed of 
prisms, wedges and pyramids, whose common altitude is the 
perpendicular distance between the parallel faces." Let us ad
here to this as defining the prismoid proper. More particular
ly expressed it appears as follows: 

Dejinitz'pn:-A prismoid is a solid haz1itzg two parallel plane 
polygons for bases, aJzd whose side suiface is made up of plane 
faces (triangles or quadrilaterals) formed by joining c01'resp01ul
i1Zg corners of the bases. 

Using correspondi7zg corners to denote any two corners, one 
of each base, such that the straight line joining them is an edge 
of the prismoid. 

The property of the first definition follows immediately from 
the second; that is, it is evident that the solid just defined may 
be subdivided into prisms, wedges and pyramids; while the 
second definition serves to give a more definite idea of the 
shape of the solid as a geometrical figure and leads more di
rectly to what follows below. 

The cross-section or simply section of such a prismoid is the 
section by a plane parallel to the bases. The altitude or 
length of the prismoid is the perpendicular distance between 
the planes of the bases. 

The Associate Pyramid:-If through any fixed point in the 
plane of one of the bases . of the prismoid we draw straights 
parallel to the lateral edges of the prismoid to meet the plane 
of its other base in points which are taken to be the corners 
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of a polygon in that plane, these lines define a pyramid whose 
vertex is in the plane· of one base and whose base is in the 
plane of the other base of the prismoid. This pyramid is 
called the associate pyramid of the prismoid. It is easy to show 
that its volume is equivalent to the sum of the volumes of all 
the component pyramids of the prismoid. 

In analogy, with the prism and cylinder of elementary 
geometry, if about the polygonal bases of the prismoid fixed 
plane closed curves be circumscribed, we have the following: 

Definition:-:-The Cylindroid is the limit to which the Prist. 
moid approaches when the number of the sides ofthe inscribed 
base polygons increases, and their magnitudes decrease,with
out limit.* 

*Wiener in his Lehrbuch derDnrstellcnden Geometrie, Vol. n, p.tge 471, 
defines a Cylindroid to be the scroll generated by a straight line guidiid hy 
n director plane. 

"Eine windschiefe Flreche mit dner einzigell, und zwar unendlich ferne~l 
Leitgeraden, also mit einer Leitebene, ist das Cylindroid." 

Ttl the Theory of Screws, English writers (Ball, Minchin, etc.) apply the 
name. Cylindroid to a particular surface generated by two straights inter
secting a third straight in a common point and.nonnalto it, moving. along 
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The plane closed curves- become the bases of the cylindroid, 
and its side surface is a ruled surface. The associate pyramid 
of the prismoid thus becomes an associate cone to the cylin

droid. 
Under the above definitions we may now proceed to demon

strate the fl)llowing theorem, which the writer first heard enun
ciated by Professor W. M. Thornton, of the University of Vir
ginia, about ten years ago, but which he has never seen in 

print. 
The mean area of the Prismoid (Cylindroid) exceeds the 

average area of its bases by one-sixth the area of the base of 
its associate pyramid ( cone). * * 

Considering first the prismoid, we may give here first, the 
tentative method of identification employed usually to show 

it under fixed law. The angle between the first two straights varying per
iodically according to law. The equation to the furfaee is 

While the name Cylindroid has been thus differently appropriated to desig
nate these higher mathematical surfaces, it has been thought to be no viola
tion to use it in the present paper for the purpose of clearing up the rail
road solid, it being very unlikely that any ambiquity will ever arise. 

**In the Third Edition of one of the most recent text books on the Theory 
and Practice of Surveying we find in a foot note there the nearest approach 
to this theorem in print. In speaking of the different methods used for 
computing the earthwork volumes the foot note goes on to say: 

"Th" method by 'meAn end areu$,' wllel"~ill the volnm" Is HBsnmerl to he th .. m~",n 

of the end areaS into the length, always gives tOI) gl'e;.tt it v()lnme (f'ixct>pt, when n great
er (',ent~r height 18 found in conne(':.tion wIth", le;,:s tnt-HI wi~1th, whio:l ::!el<lom oneUl't-;) , 

the exee;::.t:t bein~ ot.1e-:uxth or the V{)hllne nj"rhe pyrumil-ls involvell in thp '(:l('rnpnt:II'Y 

lorms of tht': prif:moirL U 

This i~ wrong rut" the eX.e,eBl" is one-halt' I)f' tl)l:> v;)lllme~ 11Ii' the pyrumiil::; invnlvcfl in 

the eoIeulentary fonus of the pril:$lnoill. 



ECHOLS. THE VOLUME OF THE PRISMOID. 

that Newton's Rule for Mean Area is applicable to the mean 
area of the prismoid. * 

Let Br, B2, Bs represent the area of the base of a component 
prism, wedge and pyramid of the prismoid respectively. The 

volume of prism, V1=H[t(B1+B1)-tO], 

wedge, 

pyramid, 

V2=H[t(B2+o)-tO], 

V a=H[t(Bs+o )-tBa], 

where H is the altitude. Using the same symbols, if B' and 
BfI are the areas of the bases of the prismoid and Bp that of 
its associate pyramid, then 

and 

B' + B"=2.'(B1+ B2+ Bs), 

Bp=2.'Ba. 

Therefore the volume of the prismoid is 

V=H[t(B' + B")-tBp]. 

Passing to the limit the volume of the cylindroid is therefore 

V = H[t(B' + BfI)_tBC]. 

Using B', B", Be to represent the areas of the bases of the 
cylindroid and its associate cone respectively. 

The above is not a demonstration but merely an identifica
tion, and is only given here to parallel the process by which 

"The so-called demonstmtlOn is as follows: 
USlDg the same nQtations as ILllove. let M be the .u'ell <>f the section mid-w>lY bet\v.en 

the hllsas. then for >I compon~nt 

prism 

wedge 

pyramid 

Vl=HBl=tH[Bl+Bl+4Ml], 

V2=t HBz=t H[B2+o+ 4M2]' 

V 3-t HBa-tH[Ba+o+ 4Ma], 
Honce the volume of the prismoid is 

V=1'(Vr+V2+Va) 

=t H(B' + B" + 4M), 

M1=B1; 

Mz=tB2 ; 

Ma=tBa. 
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the result as shown in the foot-note is obtained, which is given 
by the text books as the prismoidal formula and the demon
stration for it. 

It would be more logical in giving an elementary deduction 
of a formula for the prismoid volume to proceed as follows, 
after first showing that the solid is composed of prisms, wedges 
and pyramids; thus the volume of a component prism is 

wedge 

pyramid 

V=HBl=tH2Bl' 

V=tHB2• 

V=tHBa. 

Hence the volume of the prismoid is 

V=H[t~'(2Bl)+i~·B2+t~·Bs]. 

=H[t~'(2Bl+ B2+ B3)-l~·B~J. 

=H[t(B' + B")-tBp]. and so on. 

It is only through the direct geometrical process for deter
mining volumes of solids that we arrive in a satisfactory man
ner at the most appropriate formula for that purpose. Such a 
formula is then the true one for determining the volume of the 
particular solid in question as it is in general the simplest one. 

Let us regard then the cylindroid as the highest type of the 
solids we have been considering, of which the prismoid and 
other degenerate forms are but particular cases. Thus we de
fine the cylindroid independently of the prismoid as follows: 

A cylindroid is the solid cut out from between two parallel 
planes by a moving straight, which finally returns to its initial 
position. 

Alter idem; 
A cylindroid is a solid whose bases are two parallel plane 

surfaces bounded by closed curves, and whose lateral surface 
is a regulus. 

The regulus will in general be a scroll (warped). 
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Since a scroll is fixed when a linear director, one position of 
an element and the director cone is given. Then the cylin
droid is fixed, given one base, one element and the associate 
cone, together with the position ofthe plane of the other base. 
. Again, if the cylindroid be given the associate cone is at 

once fixed, for from thc first definition it follows, that if through 
a fixed point in one of the planes a straight passes and moves 
so as to be always parallel to the straight which cuts out the 
cylindroid, the former cuts out the associate cone from the 
space between the two parallel planes. . 

To compute the volume cut from between two parallel planes 
by a moving straight, we proceed to find first the area of any 
cross-section (the area of a running section parallel to the base 
planes). 

Project the moving straight and its traces with the planes 
on any plane parallel to the bases. 

Let A be the length of the projection of that part of the 
straight which is included between the parallel planes, its ex
tremities being B' and B". 

Let d(} be the angle through which the line Ii turns in mak
ing a small shift, 0 the point of contact of A with its envelope 
and [l the distance of one end of ,{ from O. 

p --

Q---:~-:"-- -;-' --+-----( 

. .A.:~i§p:la~e parallel to the bases cuts the moving straight in a 
pointw}j'ich·divides it in constant (aoo, the projection (say P) . , 

of this point divides Ii in the same ratio (say min,) this plane 
alsQdlvidestMi aItitild~ H Of'the 'eyU'ftciroidro the sa:me ratio. 

Put n 
PB"=-l=II' A.. 

m+n f •• 
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The area swept over by J. is the area included between the 
two curves traced by its extremities, so that if (B') and (B") 
are the areas of the two closed curves traced, then (B")-(B') 
is the whole area swept over by A. In like manner 
(P)-(B') would be the whole area swept over by k' J.. 

The area swept out by A turning through dN is 

d(B")-d(B')=t(p+ ).)2 dIY-~/12 dlY 

=p}, dlY+ t).2 d() . 

ButfiA,IY)=o is the polar equation to the base of the associate 
cone, hence 

and 

tJ.2 d8=d(Bc) 

d(B")-d(B')=/,;, dIJ+d(Bc) (I) 

is the element of area included between the curves traced by 
Bn and B' . 

In like manner 

--.-:pk' A dN+-tk'212 d8, 

=k'pl dIJ+k'2d(Bc) (2.) 

Multiplying (1) by k' and substracting (2) from the result, we 
have, observing that k' + k" = 1, 

d(P)=k' d(B") + k" d(B')-k' k" deBe). 

This is the relation which holds between the elementary 
areas of the curves traced by the points B', P and B", referred 
to any system of coordinates. 

If we integrate for a complete circuit of these points (closed 
curves) we have the relation between the bases of the cylin
droid, the base of its associate cone and any cross-section of 
the cylindroid parallel to the planes of its bases. 
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Thus 

P=k'B" + k"B' -k' £'Bc. * 
Put now I-k' for k", then 

P= B' + (B" - B' - BeW + Be k'2 (a). 

Thus P is a quadratic function of k'. If now k' be allowed 
to vary continuously from 0 to I, then P becomes a running 
cross-section taking in succession all the values of the sections 
from one base to the other. The average of all of these is then 
the mean area of the cylindroid. Thus the mean area of the 
cylindroid is in symbols 

I f1 !2=-- Pdk' 
1-0 ' 

~ 

= fl[B'+(B"-B'-Bc)k'+Bck'~J dk', 
o 

-- 1 (B" + B') 1 B --2 - -If c· 

Otherwise by the the ordinary geometrical process, iet lz be 
the distance, of the cross-section P from the plane of one of the 
bases (say 13'), then lziH==k', substituting in (a) 

B"-B'--B. B 
P=B'+--H----C,lt+ H~ lz2. 

The section of a cylindroid is therefore a quadratic function of 
its length. The volume of the solid is then 

V=fH Pdlz. 
o 

Putting in the second member above for P and operating we 
have as before 

v = H [t(B" + B')-lB,J. 

Tn}sthen is the rational formula for computing the volume of 
1ill),y.cylindroid or prismoid, It should therefore be expected 
'~' ,"',- "'/" "--~-~ ""--,--.-, .. ,-"-.--.. --"'-.. -.------,~-----~ 

*This is J,IolcHtch's Theorem. 
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to give the volume of the solid, with less labor than is required 
by any more comprehensive formula. 

It is easy to eliminate Be between equations 

P=k'B" +k"B'--k'k"B" 

and 

thus getting the mean area td in terms of the base 
that of any cross-section, as for example putting 
then P becomes M the mid-section. Hence 

M=t(B" + B')--iBe, 

g=t(B" + B')-t Be. 

areas and 
k':=k" t 

:.b 

From which by subtraction we see that the mean area differs 
from the mid-area by one-twelfth the base of the associate 

cone. 
Eliminating Be we have 

td=-}(B' + B" + 4M). 

This is the form of the so-called prismoidal rule, more gen
erally known as Simpson's Rule, but which is really due to 
Newton [lVletlwdus DiffC7'e'lltialisJ. It may be found deduced 
in any good work on Integral Calculus [Todhunter, p. 158]. 
It is mis-no mer to call it the prismoid formula, for it applies 
not only to the cylindroid and all of its degenerate forms 
but applies as well to a large class of solids of a 
higher order. One would be as well justified in calling the 
formula above deduced for the cylindroid the "conical formula" 
because it happens to give the volume of a cone-frustum, as 
calling Newton's Rule for mean area the "prismoid formula" 
because it gives the mean area of the prismoid which is only 
one of the degenerate forms to which the rule applies. 

\Ve have seen above that it is a characteristic property of the 
cylindroid (prismoid), that its cross-sectional area is a quad
ratic function of its length, therefore the formula for the mean 
area of the cylindroid is also the formula which gives the mean 
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area of any solid whose cross-sectional area is a linear function 
of its length, but the converse is not true, for in such solids as 
the latte,' (wedges and conoids) there is no associate cone. 

Newton's Rule for mean area gives not only the mean area 
for solids whose sectional areas are linear and also quadratic 
functions of their lengths, but also of all solids whose sections 
are cubic functions of their lengths. It is therefore far more 
comprehensive than the true prismoid formula. The demon
stration of this is also of the nature of an identification; it is as 
follows: (Todhunter Int. Cal., p. 173). 

Let there be a solid such that the area of a section made by 
a plane parallel to a fixed plane and at a distance I from it is 
always 

P=a+ bl+cP+ dF, (1) 

where a, b, c and d are constants. 
Let three equidistant sections of the solid B', M. Bn be made 

by the fixed plane and two others parallel to it in order. Then 
the volume of the portion of the solid included between the 
two extreme sections is 

V=JL Pdf, 
c 

=aL+-}bL2+}cLH+tdU. 

Where L is the length of the solid, i. e., perpendicular dis
tance between the planes of B' and Bn. The mean area is 

therefore 

(2). 

But by (1) 

if I 0; P=B'=a. 

if I tL; P=M=a+tbL+tcL2+tdU. 

if f L; p=Bn=a+bL+cL~+dU. 
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Therefore 

13' -tAM --r- E"=6a+ 3bL-+zcU-t- :~dL{ 

and comparing with (2) we find 

!d=;\-(B' + B"·+-4 M). 

The formula involving the base of the associate cone being 
of a less general character than that just written it is reason
able to expect of it more simplicity in application, as the 
sequel shows. 

Consider for a moment a prismoid. Project it on a plane 
parallel to the bases. In this plane refer all points to any sys
tem of rectangular axes. Then if .'1/, y' and x", .Vlf be coordi
nates of a pair of corresponding corners in the bases. The 
coordinates of the corresponding corner in the mid-section \vi11 

be !r(y'+y" ), 

while the coordinates of the corresponding corner of the base 
of the associate pyramid are 

, " , If . \' --. .\' ; y-y . 

The computation of the areas of the bases is the same in either 
case, while in order to compare the labor of computing the 
area of the mid-section with that required for the base of the 
pyramid, it is only necessary to see that in the respective co
ordinates we deal with sums in the one case and differences in 
the other, \vith the additional practical advantage always pre
sent that in the latter case the formula for mean area is in the 
shape of a correction applied to the average of end areas, the 
base of the pyramid in practical cases being small, whereas the 
mid-area generally exceeds the average of end areas. 

While it is of no practical importance to the engineer it may 
nevertheless be interesting to apply the foregoing for the sake 
of illustration to the particular case of the railway prismoid. 
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The engineer in surveying his cross-section, refers the poly
gon to a system of rectangular axes in its plane and measures 
the coordinates of its corners with respect to the road bed line 
and the vertical through its center as axes of abscissa and or
dinate respectively, calling them in order distance-out and 
lzeiglzt. Furthermore he takes no cognizance of the algebraic 
change of sign in coordinates, but merely calls them rights and 
lefts, cuts and fills respectively. The uniform method adapted 
for recording the field notes preserves the identily of the sec
tion. 

Thus if b be half the road bed, lz and m the height and dis
tance-out to the right of center, k and lZ the corresponding 
measurements to the left, the record of the cross-section ap
pears complete in the adapted form. 

o ks kl d Itl lzs 0 

where d is the center height., 
The area of any polygon in terms of the 

7t corners being 
coordinates of its 

2A=1 XlY11+ I X2Y21+ 
'\"2Y2 ,XaYR 

___ +/xnYJ 
zlyd' 

it is easy to see that the engineer's record of his cross-section 
is really a determinant for its double area. Thus the double 
area of the cross-section above recorded is 

~ X ks X ___ /. k~ /. ~ X ':1_ X ___ X _~fl X 0 

b ns nl 0 ml m~' b 

In which the heavy lines join factors of positive product, dot
ted lines those of negative product. The sum of all the pro
ducts is double the area. * 
,--._--------_._-- -----

*This formula for the area of an irregular section was first given in En
gineering News, Vol. XX, No. 39, in an article under the heading "A 
Cross-Section Mnemonic." 
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The cross-sections being written successively in the note 
book, each pair represents the bases of a prismoid whose 
lateral edges are noted, while on the ground by the engineer, 
by joining the coordinates of corresponding corners by a line 
in the notes. 

Let the bases of a prismoid be 

o Ks D HI Hs 0 

b -N~- \\ 701Ml/Ms b 
/ / / 

o kg ki d hI 0 
b ns - nl 0- m~-- b . 

Coordinates in the same vertical are presumed to correspond 
without further indication. 

The double mid-area for such a prismoid is to be computed 
from 

c:. t(K~+ksH(K;+krH(D+krH-(D+d! -t(Hr+d) t(Hr+hr) -HH~+hl) ~, 
b~(Ns+ns) MNs+nr) ~n[ 0 ~MI HMr+mr) ~(M.+ml) b 

while that of the base of the associate pyramid comes from 

Ks-ks Ks-ki D-kl D-d HI-d HI-l~l H~-hl. 
Ns-ns NS-ni -nr -0-~ Mr-mr Ms-m~ 

Employing the same rule in either case as that given for the 
area of any ordinary cross-section, noticing that in the latter 
case the subtractions may change the sign of some of the pro
ducts. 

To apply the result') to a numerica.l case, take the example 
in Henck's Field book, Art. 122, which he uses to compare 
methods. 

B"- 0 . 4 8 12 0 _ 

-915/0 /27 9"-
/ / 

B'=~ ~ 13.6 .:.:: ~ = 
9 21 0 24 9 
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M- 0 6 8 10.8 12.8 II 0_ 
-9 IS 10.5 -0 I3~ 25.59- 355·55 

Bp=i~ ~~ -2=_88.2 
6 21 0 --27 -3 

52= t(B' + B" + 4M)= ~ (B' + B")- ~ Bp 

=328 .2 . 

35 

The advantage in the computation lies so largely in favor of Bp 
as against M, that neglecting the advantage to be derived 
from the former as a correction to HB' + B") it is preferable to 
use the simple method in cases where the actual volumes are 
to be computed. 

Regularly and ordinarily in practice only three-level sections 
occur, and even then the 'computation of volume is further 
simplified by conceiving the surface ground to be determined 
by gauche quadrilaterals through each of which is passed a 
hyperbolic paraboloid, thus for each such quadrilateral we 
have one less corner in the mid-area and also in the base of 
the associate cone than would have occurred had the Henck 
prismoid been used instead. Evidently the introduction of the 
hyperbolic paraboloids does not interfere with the mid-area 
and the base of the associate pyramid remaining polygons, for 
in this surface one set of generators is parallel to the bases of 
the solid the other set for each surface moves always parallel 
to a fixed plane, therefore the corresponding element of the 
associate pyramid moves in a plane and traces a straight in 
the plane of the base; The reason for this simplification is not 
merely to save labor, but because in fact the volume for any 
gauche quadrilateral as determined by its hyperbolic paraboloid 
is exactly the arithmetical mean of the volumes which are de
termined by considering the diagonals of the quadrilateral suc
cessively as edges of a Henck prismoid. To prove this it is 
only necessary to prove the following: 



ECHOL~. THE VOLUME OF THE PRISMOID. 

Theorem:-The volume of the solid bounded by plane tri
angles, whose edges are the sides and diagonals of a gauche 
quadrilateral, is bisected by the hyperbolic paraboloid passing 
through the sides of the quadrilateral. . 

Let a and c be two opposite sides of the quadrilateral, the 
solid is composed of two pairs of triangles, a non-contiguous 
pair meeting in a, the other pair in c. Any plane parallel to 
a and c cuts the solid in a parallelogram, for it cuts the planes 
which meet in a in straights parallel to a, and those which meet 
in c in straights parallel to c. This parallelogram moving 
parallel to itself generates the solid. But the plane of this 
parallelogram always contains the element of the hyperbolic 
paraboloid of the (a, c) generation, and since this meets the 
other two sides of the quadrilateral it must be the diagonal of 
the parallelogram, dividing that figure into two equal triangles, 
each of which generates half of the solid. 

Thus the ignoration of the diagonals, while in one particular 
prismoid may give an approximation to the earth volume not 
within the limit of error, in any series of consecutive prismoids 
must give a volume very near the true earth volume, since the 
cross-ridge and val1~y lines are just as likely to occur as one 
diagonal as the other. 

It is under these assumptions then that engineers compute 
earth work volumes. Sections being reduced to three-level 
sections, the computation of mid-area and base of pyramid are 
correspondingly simplified. Thus in the regulation prismoid 

oK D H 0 

b'N-oM'-r 

The mid-section becomes 

o k d h 0 

z;;;o mb 

o 1(K+k) ~(D+d) H H+h) 0 

b HN+n) --0- HM+1n) Ii 
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The area of which can be computed as above, or may now be 
written out as a rule, thus 

8M= 2b(2'S)+(D+d) 2'0. 

Eight times mi'd-area is 2b times the sum of side-heights 
+(D+d) times the sum of the distance-out, 

The consideration of the mid-area is useless and unnecessary 
for the base of the pyramid is 

K-k D-d H-Iz 
N-n o M-m 

and its double area in algebraic form is 

(D-d) (M T N-m-l1). 

One-twelfth of this expression (which may be negative) sub
tracted from the average of end-area"s gives the true mean area. 
It is upon this basis that the tables referred to have been com
puted. A formula may be written down at once 'for the cor
rection to the average end-areas for any given cross-sections, 
but it would in general be too complicated for use. 

An interesting point in connection with the cylindroid 
(prismoid) is the distance of its center of gravity from the plane 
of the mid-section, a value which is used in explaining the 
question of IOllg /zaul. The formula for the running cross
section lends itself to an easy deduction of this. 

Thus if X be the distance of the center of gravity from the 
plane of the base from which II is measured we have by the or
dinary formula, 

vx=IH Phdll, 

putting in the value of P in terms of h from above, and for V 
its value H[-~(B' + B")-tBcJ we have, after integration, 

H[J(B'+B")-tBc] X=H~ [t-B'+tB"-l2BCJ. 
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The distance of the center of gravity from the mid-section is 

x=X-tH. 

Substituting in the above we get 

H B"-B' x = - --_ .. _--
6 B"+B'-tBc· 

Whence the approximate formula used by the engineer 

H B"-B' 
.. \~ = (r =B"" +-;-B~';-' 

Since t Be is practically small when compared with B" + B'. 



RICHARDS. THE BEGINNING OF MATHEMATICS. 39 

THE BEGINNING OF MATHEMATICS. 

By PROF. W. B. RICHARDS, ROLI.A, Mo. 

11 GEOMETRY. 

-p~ St))ru i1amA(k~/} rLrparro)) ~;ri Tf.wp.s7:pia)). 

Euclid. ap. Procl. Diadoclz. 

It is unfortunate that the adjective.-Greek-in prevailing 
use to designate whatever pt:rtains to the people of whose 
intellectual labors we are about to speak, should suggest but a 
part-and what at some periods was a minor part-of the 
territory through which this people was scattered, and in which 
their mental activity had its first field. The Hellenes them
selves knew their country, as their descendant.c: still know it, 
only as Hellas. The name Greece, given to it by the Romans 
and adopted by common consent of later times, is derived from 
rpat/rol, the name of a small tribe with whom the Romans 
first came in contact. It is not mentioned by any writer 
earlier than Aristotle. The employment of the term Greek, 
while sanctioned by usage, is apt to be misleading to one bet
tel' acquainted with modern geography than with ancient his
tory. The national spirit was in a largely measure wanting 
among the Hellenes, and the ties which they recognized were 
based upon ethnic, rather than geographic relations. The 
name Hellas was broad enough to include not merely the 
dwellers in the little peninsula which now bears the name of 
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Greece, but all, under whatever sky, who might claim descent 
from them-not merely the walker in the groves at Athens, the 
hardy Spartan, or the Messenian mountaineer, but him as weli 
of the same stock who had his household gods by Leucadian 
steep, or breathed the soft air of Italian Sybaris. Indeed the 
first fruitage of what was to be so glorious a springtime sprang 
upon other soil than that which lies between Olympus and 
Taenarum. It was among the colonies, not on the main-land, 
that were made the first steps in Literature, in Philosophy and 
in Science. Except the Boeotians, Hesiod and Pindar, no poet 
of the first rank (if the former's theogony and rough and ready 
expressions of practical wisdom entitle him to be named as an 
exception) acknowledged as his home what we know as Greece 
until the time of Aeschylus. Homer, if we admit that there 
was one such man who wrote the poems attributed to him, was 
an Ionic Greek, living in Asia Minor or on one of the islands 
that fringe its coast. The biting iambics of Archilochus, the 
noble lyrics of Simonides, Anacreon's praise of Love and 
Wine, the mutual sighs of Alcaeus and soft, slandered Sappho, 
all come from lips that learned to lisp numbers amid the 
Aegean isles. All the early philosophers from Thales to 
Sacrates, that is for two centuries, were natives of the one or 
the other of the Hellenic colonies. 

The Ionic Greeks, who had their seats along the middle part 
of the western coast of Asia Minor and in the islands adjacent 
to it-"Sons of lavan", as the Scripture calls them-were the 
earliest movers in the lNork of Greek culture. Their character
istics as a people and their situation combined to give them 
this precedence. The Ionians were distinguished among the 
other Greeks for their quickness, their viracity, their readiness 
to receive impressions. The stuff of which they were made was 
far more fictile than that of their Aeolic or Doric kinsfolk. 
They possessed in the highest degree among Greeks the qual
ities that distinguished the Greeks from their contemporaries, 
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Their location, in the direct track of the western process of 

civilization, and their commercial relations with the Egyptians 

and the Phoenicians, contributed to make them first among 

Aryans to feel the impetus toward scientific investigation 

which an acquaintance with the attainments of these people 

would give. 

The meagreness of the contemporary historical 
records does not enable us to speak with definiteness 
and certainty as to the exact connection between the, incipient 
Greek culture and the achievements of its predecessors. 
Ueberweg (Hist. of Philosophy, Vol. 1., P.31,) says: "To 
what extent the philosophy of this age (and hence the genesis of 
Greek philosophy in general) was affected by Oriental influ
ences, is a problem whose definite solution can only be antici
pated as the result of the further progress of Oriental and, es
pecially, of Egyptological investigations. It is certain, how
ever, that the Greeks did not meet with fully developed and 
completed philosophical systems among the Orientals," The 
same general fact is true of Science. Nor are the traditions of 
either the Greeks or the Orientals entirely trustworthy. It 
would not be strange if the early Greeks, anxious to lend a 
flavour of antiquity to their teachings, should have attributed 
their origin to the Egyptians, nor if the national pride of this 
latter people first consented to the attribution, and then insisted 
upon it, until they, and the world at large, placed far more 
stress upon the indebtedness of the younger to the older peo
ple than is justified by the facts. The work of the Orientals is 
not to be neglected in estimating the influences that brought 
about the beginnings of Science, yet on the other hand we 
need to guard against the danger of ascribing to it a part in 
the history of Science in general. and Mathematics in particu
lar, beyond that which it really played. What they did was a 
leading up to Science rather than a beginning of it, and the 
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debt due to them from the Greeks and all later nations was not 
comparably so much for actual contribution as it was for sug
gestion and incentive. 

The beginning of Science is signalized by the appearance 
for the first time of a single name in connection with the ad
vancement of knowledge. The Assyrians had an Astronomy, 
with copious records of observations made, but no astronomer; 
the Egyptians Iud an inkling of Geometry, but no geometer. 
Some progress in learning may be made under the push of 
natural laws by a people, working without concert, yet happen
ing the one occasionally to cap the discovery of another with a 
"greater; but no body of thought assumes the proportions of a 
science until its scattered fragments have been collected and 
fused together in the crucible of a single brain. 

The same venerable personage stands at the head of the 
long list of ?hilosophers, astronomers and mathematicians. 
Indeed at this early period to be one of these was well nigh 
being the others. 

Thales of Miletus was born in the Ionic city of that 
name on the western coast of Asia Minor about the 
year 640 B. C. Herodotus (Book I.!. c. 170) 
says he was of Phoenician descent. Diogenes 
Laertius gives Plato as authority for the tradition that his an
cestry might be traced back to Cadmus, who first introduced 
letters into Greece, and Zeller agrees with ~his view. Another 
account makes him out a native Milesian of pure Greek blood. 
Whether or not his family relations were such as would involve a 
connection with the people by whom his compatriots wer'e be
ing imbued with learning, the circumstances of his birth placed 
him in the immediate path of the westward flowing stream of 
knowledge. Thales, who enjoyed among the Greeks a rep uta-

*Lives of the Philosophers, r., I. 
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bon for wisdom which we know not whether to attribute more 
to his own worth or to the obscurity of the period, was by com
mon consent acknowledged first of the seve>n sages. His most 
valid claim to the admiration of his contemporaries and pos
terity as well, was the alleged prediction of an eclipse of the 
sun, which took place in 585 B. C. This was the same ob
scuration otherwise famous in history as having occurred just 
as the Lydian and Median Kings·. were about to join battle 
on the banks cf the river Halys, and which so filled these bar
barous potentates with awe that they at once declared a mu
tual peace. Herodotus, who was too fond of a good story to 
be embarrassed by considerations as to its truth, recites this 
legend (B'k. I, c. 74), and later authorities follow him. There 
are, however, we regret to say, serious, if not insurmountable, 
difficulties in the way of our lending credence to this pleasant 
narrative. The state of Astronomical science at the time 
would scarcely warrant the belief in the possibility of so exact 
a calculation. It is not at all unlikely that Thales was ac
quainted with the Assyrian "Saros," a period of eclipses cover
ing 233 lunations, 01" even the longer period of 600 years. 
But while eclipses ofthe moon were predicted by means of these 
cycles it is disputed whether eclipses of the sun could be foretold 
in the same way. To have predicted this phenomenon for any 
definite locality moreover, would have involved a knowledge of 
the sphericity of the earth, which was sufficiently foreign to 
Thales' conceptions. Plutarch says that Thales was engaged 
in commerce, and all the authorities agree that in this way he 
was led to Egypt, and became acquainted with the Egyptian 
rudiments of Geometry. Diogenes Laertius quotes Hierony
mus of Rhodes as asserting that he never had any teacher save 
when he went to Egypt and associated with the priests.* 

*Lives of Philosophers, I., 6. 
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Hence he obtained the inspiration of his Geometric investiga
tions; his speculative spirit seized upon the crude fragments of 
truth tortured from centuries of experience and observation, 
and began to build beyond them into the Empyrean. Proclus 
(Ad. Euclid. p, 19) says: ... 

. _" - ~ 1" '}.u' ' ~"r,'l)" "gal,],,: 01£ 7[/I(I)r:O)) w; ," qUiCr:U)) ~ .lNUll psr:7jtarSlI $,::; T'Y;lI J'd,/,(J..()II. 

7:7;V es(opilJ.)) TfJ./Jt:'I/,) Irf/.! rrollAfi p.S)) (J.uro~ cUl'S, j[o)Jev}) as t'(l~ (l/,~"'C(I..~ 
...., .., \ (' .. k fJ ~ ,_ ' 'I Q 'i j "'" 

r:ue::; peT aUTO)) u'PYJr7J(J(J.r:u, r:o,::; PSlI Il.lr()AIICWr:el'UlI i!:7[ljJ(J.",,{/W, T()(::; 

i)i: (J.i(JI'J7jTCk((n:spoll."* 

The foHowing propositions are attributed to Thales: 

(1.) The circle is halved by its diameter. 

'(2.) The angles at the base of an isosceles triangle are"equal. 

(3.) The vertical angles formed by the intersection of two 
right lip.es are equal. 

(4.) Two triangles are equal when they have one side and 
two angles of the one equal respectively to the corresponding 
parts of another. 

(5.) The angle inscribed in a semi-circle is a right angle. 
Diogenes Laertius says, "Pamphile relates that he (Thales), 

having learnt Geometry from the Egyptians, was the first per
son to describe a right angled triangle in a circle, and that he 
sacrificed an ox in honor of his discovery. But others, among 
whom is Apollodorus, the calculator, say that it was Pythagoras 
who made this discovery. It was Thales also who carried to 
their greatest point of advancement the discoveries which Cal
limachus in his iambics says were first made by Euphebus the 
Phrygian, such as those of the scalene angle and of the triangle, 
and of other things which relate to investigations about lines."** 

*Thales, after having journeyed into Egypt, brought back this science: 
(Geometry) to Greece and both discovered many things himself and handed 
down to his successors the elements of many things, approaching some 
in a more general manner, some in a more experimental. 

**Lives of Philosophers, r., 25. 
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(6.) The homologons sides of similar triangles are in pro
portion. Plutarch distinctly ascribes this to him. 

Weare confronted with the difficulty of which we have 
spoken in attempting to determine what part of the enuncia-· 
tions accredited to Thales was derived from his intercourse 
with the Egyptian priests, and what was original with him. 
We can readily see how the conclusions, (I), (2) and (3), could 
be reached inductively from observation of particular cases, and 
might belong to that portion of his teachings at which Produs 
says he arrived (J.i{JI'j'ln/{(~Jrs/!ul>-in a more sensible (empiric) 
manner-a portion which may fairly be assumed to stand for 
his immediate acquisition from the Egyptians; while (4), (5) 
and (6) would seem to belong to that part proved XI.IY,i/.fX(/rr:2/ J lJ)) 

-more generally-and to be the product of his own invention. 

The proof of (5) [Euclid I, 3 I,] involves (2) and the principle 
that the sum of the angles of any triangle is equal to two right 
angles. This would demand that Thales should be acquainted 
with the last named proposition-that is if a general proof of 
(5) was offered. Produs asserts that the theorem concerning 
the angles of a triangle's being equal to two right angles was 
first proved in a general way by the Pythagoreans, but it was 
probably known to early mathematicians as a fact of observa
tion. 

Two applications of this new instrument, Geometry just 
being fitted to the worker's hand, to the solution of practical 
problems-marvelous enough they must have seemed to the 
ancients-are handed down as having been made by T~1ales. 

These were the determination 

( I) of the distance of a ship at sea; 

(2) of the height of the pyramids by their shadows. 

These problems are interesting, besides in other respects, as 
showing the influence of environment in determining the direc
tion of mental effort, and confirming the principle, upon which 
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we touched in the preceding paper, that inventions in the field 
of science spring from the suggestion of practical questions. 
The residence of Thales upon the coast and among a maritime 
people, naturally presented the first problem to his inquiring 
mind, and furnished an incentive to the solution of it which 
would have been absent had he spent his days inland; while 
his travels in Egypt, beneath the shadow of the lofty pyramids, 
could not fail to stir his spirit up to an attempt to compass 
what seemed the impossible feat of measuring those inacces
sible heights. And it is more natural to suppose that the im
portant general theorem that the sides of equiangular triangles 
are proportional, whiyh it is generally assumed that the s{)lu
tion of these problems presupposed, was discovered in the at
tempt to solve them, than that it occurred to Thales in a purely 
abstract way, and that the questions were afterwards reRolved 
by its aid. 

Diogenes Laertius quotes Hieronymus of Rhodes as saying 
that "He measured the pyramids, watching theil'shadow and 
calculating when they were of the same size as that was." 
Others give an account of the feat which would involve the use 
of Theorem (6) alone. Obviously enough both of these prob
lems might be solved without using (6), by means of (2). 

So much stands accepted in history as the tangible work of 
Thales. But remarkable as were these ac hievements in com
parison with aught that had been done before, they in them
selves mark but a fraction of the service of Thales to later 
science. The prime element of this contribution was the in
stitution of a method of inquiry which passed beyond the in
dividual instance, and sought to lay an unchanging foundation 
in the principles of abstract truth. Science was set on foot and 
might run its victorious course. 

The immediate successors of Thales in thl'! Ionic school of 

Philosophy, while they took up the physical speculation in 
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which he had set an example, do not seem, so far as any re
cords show, to have made any advancement in Mathematical 
invention. The next step in the development of Geometry 
was the work of the Italic school-to accept the ancient geo
graphical division-that is, of Pythagoras and his followers. 
The name of Pythagoras is one suggestive at once of myth and 
mystery. The real figure of the man has come down through 
history girt about with an increasing nimbus of mystic tradition. 
He is the hero of a cycle of philosophic legend. Not only his 
own age but later ages have ascribed to him the possession of 
supernatural power, and have painted him and his school in 
the colors of romance. Out of the mass of tradition which has 
been handed down to us, it is impossible to assert confidently 
how much is fact and how much fiction. His life, if the reports 
of the ancient historians are accepted, was as varied ag the 
range of his speculations. 

He was the son of Mnesarchus, the Tyrian, a seal-engraver, 
and was born in the island of Samos about 582 B. C. He 
studied at Lesbons under Pherecydes and at Miletus under 
Thales and Anaximander. He visited Egypt and spent 
twenty-seven years at Memphis and Thebes communing with 
the priests and sages. When Cambyses over-ran Egypt in 
525 B. c., Pythagoras was among the captives, and was car
ried off to Babylon, where he was held as a slave for some 
years. Here he became acquainted with the learning of the 
Chaldaeans, and gained as well an introduction to the religion 
of the Hindus. Having obtained his liberty, he visited in tum 
Crete, Sparta, Elis, and Delphi, and returned to his native isle 
to establish a school. Discontented with the tyranny of Poly
crates, he proceeded to Italy and founded at Crotona "in the 
house of Milo", a school which soon attracted a large number 
of attendants. * Interference in local politics caused his own 

*Diogenes Laertius says three hundred. 
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banishment. the burning of his house and the dispersion of his 
followers. He retired to Metapontum where he died SOOI1 

after, (about 490 B. C.) 
Such the narrative that might be constructed by one liber

ally credent. The statements as to his travels and adventures 
in the East, it has been observed, mg.y either be statements of 
fact or an invention to connect his teachings with earlier orig
inals. There are reasons to believe that he did travel in Egypt; 
the rest is more doubtful. Cicero says, (De. Fin., V. 29, 87) 
"Aegyptlt1JZ lustravit." He also says that Pythagoras came to 
Crotona in 01. 62. 4 (529 B. C.,) (Rep. II. 15). If this be true 
we should have to give up the story of his Babylonish captivity. 
\Ve must ever regret that the history of Pythagoras' life, writ
ten by Theano, a beautiful young girl whom he espoused in 
his seventieth year, has not come down to us. 

The society which Pythagoras founded was 011 its scientific 
side a school of philosophic inquiry and instruction, while on 
its ethic side it partook ofthe nature of a religious brother
hood. The search for truth was combined with a rigid person
al discipline. Intending disciples were said to have been sub
jected to a long period of probation, of which strict obedience 
and absolute silence were the cardinal features. Diogenes 
Laertius says that this period was five years. The use of ani
mal food was permitted only within certain restrictions. Cer
tain vegetables were tabooed, and celibacy was inculcated. 
Thus we see that the ancient Pythagoras and the modern 
Tolstoi are alike as regards both theory and practice. 

The speculations of the school took a wide range-over phil
osophy, astronomy, mathematics, music.. Best known, perhaps, 
of their tenets is that of the transmigration of souls, which their 
great founder is thought to have imbibed in his Oriental wan
derings. He, himself, claimed to be a son of Mercury, and to 
have existed in many previous shapes. He said that Mercury 
offered him any gift save immortality and that accordingly he 
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requested that, whether living or dead, he might preserve the 
memory of what had happened to him. So was his existence 
continuous. * 

The philosophical conceptions of the Pythagoreans were 
strangely blended with arithmetic considerations. The whole 
system of the universe was held to depend upon the relations 
between numbers. "The Pythagoreans seem" says Aristotle, 
"to have looked upon number as the principle and, so to speak, 
the matter of which existences consist." "Number," says 
Philolaus, (the successor of Pythagoras), "is great and perfect 
and omnipotent, and the principle and guide of divine and hu
man life."t 

Produs states, in his commentary on Euclid's elements, that 
the word "mathematics" originated with the Pythagoreans. 
The same author says that the Pythagoreans made a four-fold 
division of mathematical science, its parts corresponding to 
Arithmetic, Music, Geometry and Astronomy, respectively.t 
Diogenes Laertius relates that "It was Pythagoras also who 
carried Geometry to perfection, after Moeris had first found 
out the principles of the elements of that science as Aristidides 
tells us in the second book of his History of Alexander."§ The 
Pythagoreans defined a point as "Unity having position." 
They showed that the plane around a point is completely filled 
by six equilateral triangles, four squares, or three regular 
'hexagons. (Produs). Eudemus attributes to them the theorem 
that the interior angles of a triangle are equal to two right 
angles, and gives their prool, which is substantially the same as 
that given by Euclid. We have it stated upon the same au
thority (quoted by Produs in his commentary) that the prob
lemsrelating to the application of areas, the construction of 

*Diogene$ Laertius. I..ives of Philosophers, B'k. VIII, c. 4. 

tEncycIop~diaBri,tll.n:nica, Vol. xx. p. 144. 

tEncydop<edia :Britannica, Art. Pythagoras, p. 146. 

§Dio~nes Laetd~,Li~es~f PhHosophers, VIII, II. 
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the five regular solids, and the discovery of irrational quantities 
were all due to Pythagoras. Three of the five regular solids, 
the tetrahedron, the cube and the octahedron, were known to 
the Egyptians. and occur in their architecture. Pythagoras 
discovered the other two, the dodecahedron and icosahedron, 
and shewed how to construct them all. The discovery of the 
existence of irrational quantities was one of the most notable 
made by the Pythagorean school; it may have arisen from an 
attempt to express the length of the diagonal of a square in 
terms of a side. It paved the way for the general treatment of 
proport~on found in Euclid-a treatment which holds as well 
for incommensurable as for commensurable magnitudes. 

The theorem best known in connection with the name of 
Pythagoras-in fact frequently cited as the Pythagorean 
theorem-is that which asserts that "the square on the hypo
tenuse of a right triangle is equal to the sum of the squares on 
the other two sides." This proposition is distinctly attributed 
tf) Pythagoras by Vitruvius, Diogenes Laertius, Proclus and 
Plutarch. Diogenes Laertius says, "And Apollodorus, the 
logician, records of him that he sacrificed a hecatomb when he 
had discovered that the square on the hypotenuse of a right
angled triangle is equal to the squares of the sides containing 
the right angle. And there is an epigram which is couched 
in the following terms: 

"When the great Samian sage hi" nobl~ problem found, 
A hufidred oxen dyed with their life blood the ground." 

This, it will be observed, is just one hundred times the amount 
of gore which the same author represents Thales as having 
spilled after having inscribed a right angle in a circle. Plu
tarch in his work on "Isis and Osiris," dealing with the mys
teries of Egyptian religion and learning, asserts that the ancient 
Egyptians knew that a triangle whose sides contain three, four 
and five parts respectively is right-angled, and that the square 

*Lives of Philosophers, VIII, II. eYonge's Translation.) 
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on the longer side is equal to the sum of the squares on the 
other two. It has been very plausibly suggested, too, that the 
fact might have become known to them in a special case by 
the observation of the tesselated floors common in Egyptian 
buildings. The square on the diagonal of one of the square 
tiles would be seen to contain four of the isosceles right tri
angles into which that diagonal divided the block, while each 
of the squares on the sides contained two such equal triangles. * 
To Pythagoras. however, belongs the merit of having given the 
first general proof of the proposition-a proof the same, there 
is no reason to doubt, as that now given in our Geometries. 
Many different proofs of this historically interesting proposi
tion, it may be noticed in passing, have been offered; a number 
of them have been collected in one publication by a German 
named Hoffman. 

Materials do not exist for writing a succinct history of the 
progress of Mathematics in the century and a half between 
Pythagoras and Euclid. We know that it was a period in 
which there was much geometric study, and in which consid
erable additions were made to the fund of Mathematical 
knowledge, but of these only meagre and fragmentary records 
remain. There were three problems which especially engaged 
the attention of mathematicians: 

1. The duplication of the cube. 
2. The trisection of an angle. 
3. The quadrature of the circle. 

-two, three, four, one might say as a mnemonic. The work 
of some few men-leading like stepping-stones from the one to 
the other of the great names mentioned-deserves to be no
ticed, Our account is in the main taken from Marie's "His
toire des Sciences Mathematiques et Physiques." Hippocrates 
of Chios, (bn. 450 B. C.) wrote a book on the elements of 

*See the artic1e--Pythagoras--in the Encyclopredia Britannica, from 
which many of the above statements are derived. 
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Geometry; he was the first to reduce the problem of the du
plication of the cube to that of the insertion of two mean pro
portionals between two given magnitudes. This Hippocrates 
is not to be confused with the physician of the same name. 

Zenodorus (bn. 450 B. C.) is the author of· the oldest work 
on Geometry which has come down to us. This work was pre
served by Theon, of Alexandria, in his commentary on the 
"Syntax" of Ptolemy. Zenodorus attempted to combat the 
opinion, then. common, that equal contours enclose equal sur
faces. 

Archytas (440-380 B. C.), according to Diogenes Laertius, 
"was the first person who applied mathematical principles to 
mechanics and reduced them to a system. and the first also 
who gave a methodical impulse to descriptive geometry in 
seeking in the sections of a demicylinder for a proportional 
mean which should enable him to find the double of a given 
cube." He was also the first person who ever gave the geo
metrical measure of a cube, as Plato mentions in his Republic. 

The great Plato (430 B. C.-347 B. C.) left no work on 
Geometry, but he rendered mathematics a signal service in di
recting the attention of his disciples to the study of the conic 
sections, and in the invention of loci for the solution of the pro
blems mentioned above. 

Eudoxus of Cnidus (409 B. C.-356 B. C.) was a man of 
varied learning. Apollodorus in his "Chronicles" says that 
"he was the inventor of the theory of crooked lines."* Archi
medes, in his letter conveying to Dositheus, his treatise "On 
the Sphere and Cylinder," attributes to Eudoxus the theorems: 
"a pyramid is the third part of a prism having the same base 
and altitude; a cone is the third part of a cylinder having the 
same base and altitude.'!' Eudoxus gave a solution of problem 
(I) which Eratusthenes regarded as excellent, but which is lost. 

*Diogenes' Laerlius, Sub. nomine. 
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Menaechmus (bn. circa. 395 B. C.) studied particularly the 
elementary theory of conics. He gave a solution of problem 
(2) worthy to be mentioned. Using the modern notation it is 
as follows: Let two parabolas have their axes at right angles, 
and let p and q be their respective parameters. THen the 
equations will be y2 pz (r) and x 2=qy (2) 

from (r)p:y y:x 

and from (2) q:r=z:y; 
for the point of \ntersection, 

p:y y :r=z :q. 

So to find the required proportionals between two quantities, 
with these lines as parameters construct two parabolas with 
axes at right angles; then the coordinates of the point of inter
section will be the required proportionals. 

The name of Euclid has become literally synonymous with 
Elementary Geometry. Of no man can it be more truly said 
"He lives in his work." Indeed he scarcely lives for us out
side of it. His fate is that of some of the world's greatest-to 
have handed down an utterly imperishable work, and yet to 
have left upon history but scant impress, if any, of his own 
personality-the fate, for instance, of Homer and of Shakspere. 
Euclid's life, falling midway between the age of fable and that 
of careful and minute historic record, lacks the wealth of legend 
and tradition with which the stories of Thales and of Pytha
gora6 were richly woven about, and fails of the full narration 
which it might have .received in later years. Nothing is defi
nitely known as to his parentage and place of birth. He 
flourished in the first half of the third century B. C. Produs 
asserts that he was younger than the associates of Plato, but 
older than Eratosthenes (276- I 90 B. C.) and Archimedes 
(287-2r2 B. C.) The new Egyptian city, Alexandria, shel
tering the ashes and perpetuating the name of its great founder, 
was just rising into importance as a centre of culture. 
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Ptolemy Soter, to whom Egypt had fallen in the division of 
Alexander's spoils, had founded the great Alexandrian library, 
and gathered about him a circle of savants. Among others 
Euclid was invited thither, and here founded his school of 
mathematics. The King himself-so the story goes-was led 
by his enthusiasm for learning to become a pupil of the great 
mathematician, but finding the "Elements" rather more difficult 
reading that that to which his kingly patience was accustomed, 
inquired if there was not some easier way of learning the sub
ject. To which Euclid made the celebrated reply which stands 
at the head of this paper: "There is no royal road to Geom
etry." Two of Euclid's mathematical works have been pre
served, the Elements p'n)(xs!ll.) and the Data (dei'f()/~i1/(/'). 
Euclid's Elements have been accepted in all later times as em
bodying the essential requirements of primary geometrical 
teaching. Boetius, senator and philosopher, the last of the 
Romans of the old school, is said to have translated a part of 
the Elements into Latin (6th century), but in the lack of consis
t:!ucy among the manuscripts, critics are inclined to doubt their 
authenticity. The Arabs, to whose labors we are so largely 
indebted for the preservation of learning during the Dark Ages, 
busied themselves with translations of Euclid; one such trans
j·:ttion by Nasr-ed-Din Ibn-Hassan, the Persian astronomer of 
the thirteenth century, appeared at Rome in 1594. The first 
printed edition was a translation from the Arabic by the Italian, 
Campanl), which was made in 1482. About twenty years 
la.ter a translation from the Greek was made by Zamberti, and 
printed at Venice. Our one English edition containing all the 
works of Euclid is the Oxford edition, published by Dr. David 
Gregory in 1703, with the title Rvx}edJol) Ttl (f(l)!;OpS).Ifl. The 
compilation which has formed the basis of later English works 
on the subject, is the one given forth in 1756 by Dr. Robert 
Simson, Professor of Mathematics in the University of Glasgow. 
It comprised the first six books of Euclid, some ofthe eleventh 
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book and two propositions of the twelfth. A favorite text is 
that of the late Prof. Todhunter, which is founded on Simson's. 
On the continent Euclid has not been so strictly followed as 
in Great Britain. Our American treatises on Elementary 
Geometry are generally modelled after the French, a lal'ge 
number of them being merely adaptations of the work of the 
amiable and great Legendre. 

The "Elements" of Euclid consisted of thirteen books, to 
which were added two others, on the five regular polyedra, of 
which the Alexandrian, Hypsicles, is supposed to have been 
the author. Euclid was both a collector and an originator. 
No means exist of discriminating exactly the two parts of his 
work. We have seen that certain prop~sitions had been dis
covered before him. How many more of those which are 
gathered in his collection were due to others we cannot say. 
"Euclid," says Proclus, "put in order many things discovered 
by Eudoxus, perfected what Theaetaetus had begun, and de
monstrated more rigorously what had previously been too 
loosely proved." 

The first book begins with the definitions, the postulates, 
and the axioms. Here Euclid is laying the foundation of his 
science, and just here does he meet with the largest amount of 
cavil on the part of critics. There is certainly ground for ob
jection to some of his statements, but a discussion of them 
would be out of place here. A domain far beyond the ken 
of Euclid's restrictions has been glimpsed after two thousand 
years by the inventions of Hamilton, Grassman, and others. 

The first proposition is the problem to describe an equilateral 
triangle on any sttaight line as a side, and the first theorem is 
as to the congruency of two triangles which ha~e two sides 
and the included angle of the one equal to ths corresponding 
parts of the other. The book ends with the Pythagorean 
theorem and its converse. The second book treats of the re
lations betwt:'en squares and rectangles formed on certain lines 



RICHARDS. THE BEGINNING OF MATHEMATICS. 

and their segments. It contains two problems-to divide a 
line into extreme and mean ratio, and to describe a square 
equal to a given rectilinear figure. Stated algebraicaily, the 
first problem is to find x so that a (a-x)Xx2 or x L f-ax=a2, 

and so it involved the solution of one form of a quadratic 
equation. The third book is on the circle. The fourth book 
consists entirely of problems on the inscription and circum
scription of circles and polygons, including the problem to 
construct an isosceles triangla, having each angle at the base 
double of the angle at tho vertex, which is used in inscribing a 
regular pentagon in a circle. The fifth book is devoted to Eu
clid's celebrated treatment of proportion. The essence of the 
treatment lies in the definition of proportionality; and its 
superiority consists in the generality which flows from this 
definition, and renders the method applicable to incommensur
able magnitudes as well as to commensurable. The sixth book 
contains a number of theorems and problems involving the ap
plication of proportion. So far the enunciations are all for 
figures in one plane. Books seven, eight and nine are on 
Arithmetic. Book ten is on incommensurables. Books eleven, 
twelve and thirteen are chiefly on Solid Geometry. 

The Data of Euclid comprised, according to Pappus, ninety 
propositions; in the extant editions ninety-five propositions are 
included under the designation. Dr. Simson has left an edi
tion of these also. The Data were propositions in which it is 
required to prove that certain things being given certain 
others may be determined-that is are potentially given, since 
involved in the hypothesis. The work was intended as a kind 
of supplement or appendix to the elements, designed to facili
tate the application of the principles contained in them to the 
solution of problems. 

As examples, we may cite: 
"If from a given point a line is drawn, touching a circle 

given in position, the line is given in position and magnitude." 
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And (Prop. 6), "If two quantities are to each other in a given 
ratio, the quantities compounded of the two shall be to each 
other in a given ratio." 

Among the lost works of Euclid of which we have record 
are: Two books on Plane Loci, four on Conics, and three on 
Porisms. Simson thought that the books on Plane" Loci treat
ed of curves of double curvature, an opinion which was shared 
by the historian, Montucla. Chasles, in the introductory lec
ture delivered upon the inauguration of his course in Higher 
Geometry at Paris, took the view that they treated of surfaces 
of revolution of the second degree and the sections of them by 
planes-with whom M. Marie, in his recent history of Mathe
matics, agrees. 

Pappus says that Euclid wrote four books on Conics which 
formed the basis of the great work of Apollonius, the "Sub
lime Geometer." Apollonius in his letter transmitting his trea
tise to Eudemus, says that in his first four books he had elab
orated that which had been done before him, and especially 
mentions a certain problem which had been solved by Euclid 
only in a special case. We have, however, no information 
which enables us to speak with any degree of certainty of the 
content of Euclid's work. 

The Porisms of Euclid present one of the profoundest of 
mathematical enigmas. What did Euclid mean by a Porism, 
and what were the propositions which he enunciated under that 
name? Commentators and editors, among them some of the 
brightest of geometers, have essayed the solution of this ques
tion. Albert Girard, in the first half of the seventeenth century 
expressed the hope that he might restore the lost Porisms, and 
Fermat, a little later, touched upon the same subject. In 
1776 appeared a posthumous work of Simson's, "De Porz'sma
tibus tractatus,' quo doctrinam Porismatum satis explicatam d ilt 

posterum ab obl£vione itttam fore sperat Auctor." In our own 
century the great Chasles has made a brilliant effort at the 
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re-establishment of the lost work in his" Trois Livres de Por
ismes d' Euclide retablis, etc." 

Our definite information concerning Porisms is found 111 a 
notice given by Pappus in the seventh book of his "Mathema
tical Collection," and a brief mention by Proclus in his com
mentary on the first book of the elements. Pappus says that 
the Porisms of Euclid were an ingenious collection of a number 
of propositions, serving for the solution of the most diffi
cult problems; that the ancients defined Theorem, Problem and 
Porism as propositions respectively in which it is required to 
prove, to construct, and to find something. ProeIus gives a 
similar definition of Porisms which, he says, occupy a place 
intermediate between theorems and problems. Simson defined 
a porism as "a proposition in which it is required to show that 
one thing is given, or several things are given, which, as well 
as anyone of an infinite number of other things not given but 
of which each one bears the same relation to the given things, 
have a certain common property described in the proposition." 
Playfair, professor of Mathematics in the University of Edin
burgh, in a memoir suggested by Simson's work, defines por
ism as "a proposition affirming the possibility of finding such 
conditions as will render a certain problem indeterminate or 
capable of an infinite number of solutions." Chasles, after 
noticing the other attempts at the definition of a porism, pre
sents this one: "Porisms are incomplete theorems expressing 
certain relations between variables following a common law." 
Pappus states that there are thirty-eight Lemmas for the three 
books of Porisms, from which are deduced one hundred and 
seventy-one theorems. 

We believe that this perplexed problem has been still more 
obscured by the attempts at its elucidation. We believe that 
those who have attempted to give a definition of "Porism" have 
been groping around in the dark for what was not there. The 
name by which Euclid designated the propositions in question 
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-;;:(),f)!(J/W (gain, extra acquisition)-is the same as that applied 
to the immediate deductions from theorems which we translate. 
"Corollary" There is no notice of any definition of Porism 
given by Euclid; that which Pappus quotes, he attri
butes to "the ancients." We believe that Euclid in calling 
these propositions Porisms was not intending to distinguish 
any essential characteristic resident in all the enunciations, but 
simply labeling them as, like the Corollaries, "additional pro
positions"-a "gain" from previously deduced theorems. 
We do not think that Euclid intended to apply the name 
Porism to a class of propositions distinct, in some mystel'iolls 
and hitherto inexplicable way, from both prop')sitions and 
theorems. No rational explanation of Porisms has ever been 
offered which did not include them under the one or the other. 
Pappus, in his notice of them, quoted above, calls them 
"theorems." Simson says, "A Porism is a proposition in which 
it is required to dt'1nomtrate, etc.," and this, according to the 
definition in Euclid's Elements, certainly constitutes a theorem. 
Chasles, we have just seen, defines them as "incomplete the
orems. The diversity of expression among geometers who 
have discussed Porisms is due to an effort to frame a definition 
which shall comply with Pappus' representation of them as dif
ferent in some way from both theorems and problems, and 
shall be compre.hensive enough to include under it all the cases 
in question. The probability that Euclid used the word Por
ism in the sense which we have suggested is increased by the 
consideration that Diophanttls gave the same title to a treatise 
of his having no connection with geometry, and to which ac
cordingly the definitions of Porisms ordinarily given could not 
apply. A writer on the subject, speaking of the work just 
cited, says: "These propositions are not, however, all similar in 
form, and we cannot by means of them grasp what Diophantus 
understood to be the nature of a porism." Is is not probable 
that these were simply additional propositions suggested by the 
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line of thought contained in his great Arithmetic, and that 
he meant no more in calling them porisms? 

In subject matter the Porisms were what Euclid might have 
called a "Modern Higher Geometry;" they contained, among 
other things, the elements of the theory of tra.nsversals and 
some properties relative to the anharmonic ratio of four points, 
and thus were an anticipation of what is known to-day as 
Modern Higher Geometry. 

The following are some of the authorities for the period treated of: 
Diogenes Laertius' Lives of Philosophers--written in second century. 

Uncritical in spirit and unscientific in mel.hod, but interesting in matter. 
Pappus. Lived at Alexandria in fourth century. His "Collection" in 

eight books gives results attained by previous mathematicians, together with 
original discoveries. Very important. 

Produs. The Neo-Platonist, bn. at Constantinople, 4I2 A. D. Studied 
at Alexandria. Wrote a commentary on first book of Euclid's Elements. 

Ueberweg's History of Philosoph. §§I2, I6. 
Grote's History of Greece, Vol. II., c. 37. 
Marie's Histoire des Sciences Mathematiques et Physiques, Vol. I. Re

cently completed in twelve volumes. (Gauthier-Villars, Paris.) 
Chasles' Les trois Livres de Porismes d' Eudide re'tablis. (MalIet

Bachelier, Paris.) 
Encyclopaedia Britannica, articles, Thales, Pythagoras, Geometry, Porism. 



A DEMONSTRATION ')F THE PYTHAGOREAN THEOREM. 6 I 

A NEW ELEMENTARY DEMONSTRATION OF THE 
PYTHAGOREAN THEOREM. 

By DR. WILLIAM B. SMITH, COLUMBIA, Mo. 

From each of two congruent squares cut away four con
gruent right triangles; of the one there is left the square on 
the hypoteneuse of the right triangle; of the other, two squares 
on the legs of the right triangle; hence tke truth of the propo
sition.* 

*[The above demonstration of the Pons Asinorum is so good and simple 
that it is difficult to believe it new. We are inclined to think it is, if for no 
other reason than that Todhunter in his Edition of Euclid's Elements in re
marking on the Theorem in the notes, gives there as the most interesting of 
the many demonstrations one in which any two unequal square" are llsed 
and the proof is not so good as the above. 

The largest collection of demonstrations of this proposition seems to be 
a dissertation by Joh. Jos. Ign. Hoffmann, entitled "Der Pythagorische 
Lehrsatz ... Zweyte ... Ausgabe. Mainz, r82[. This we have not been 
able to examine.--(Eds.)] 
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SOLUTIONS OF EXERCISES 

1. 
Two vertices A and B of a triangle ABC describe straight 

lines which meet at the angle (I); show that the area of the 
curve described in their plane by the vertex C is 

fJ=ti! (a2+b2+c2-4.6 ct (I)). 

.6 being the area of the triangle ABC. [w. H. EcllOls.] 

SOLUTION. 

Let the paths of A and B meet in I. 
In any position of A B draw the cir-cum circle A B I cen

tered at 0 whose radius is r. Put C 0=8. 
Then the path of C is an ellipse whose semi-axes are 

~+r and 8-r. eSc. B., Vo1. I., No. I.) 

Join 0 A and OB, let 0 A B=a. 
Then 

The triangle 0 C A gives 

b2 = r2+b2-ub co (A +a), 
= ,a+ b2-2r b co (ti!+ A -(I), 

= r2+b2-2rb si (A-(lJ). 
The triangle 0 C B gives in like manner, 

b2 = ,-2+ fiJ-2r a si (B-cu). 

Whence results 

2(82-r2)=a2+b2-2r[b si (A-cl))+a si (B-(I))], 

=fiJ+b2 

-ar[co w(bsiA+a si B)-si w (b co A+a co B)], 

= a2+02-~[2k co (I)-csi (0]. 
SI (I) 
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Since C=2r si co, b co A +a co B=c, b si A=a si B=h. 

Hence JJ= n-((~+r) (S-r) =n-(S2_r2), 

= tn- { a2+b2--~[ 2h co w~c si (v] } 
Sl (/) 

=-?rn-(a 2 +b 2 +c 2 -2clz ctw), 

= -?rn(a2+b2+c2-46 ctw). 

Since ch is double the area of ABC. [w. H. Echols.] 

3. 

Two parallel straight lines are distant apart d; it is required 
to unite them by two circular arcs oj given radii which shall 
have between them a common tangent of length t. 

[Elmo G. Harris.] 

SOLUTION. 

Let L be (the length of the cross-over) the distance between 
the points of contact with the parallel tangents measured paral
lel to them. 

Let Rand r be the radii. Join the centers of the 
and call (I. the compliment of the angle which this line 
with t. 

Then 

circles 
makes 

It is easy to see that the central angles of the two arcs are 
equal, each represented by 1J, say. 

Then L=(R-+r)si6+tcod, (I) 

d (R+r)(l-co6)+tsi6, (2) 

or (d-R-r) = tsir'-(R+r) co 6. (3) 

Square (I) and (3), add them and reduce the result to 

L2-t2 =2d (R+r)-d2 • 

This gives the relation between Land t, either may therefore 
be furnish~d with the data. ' 



Also 

Hence 

SOLUTIONS OF EXERCISES . 

. + ') L ta VI. 0 =----, 
R+r-d 

ta a+ta rI 
-r-ta i'l ta r;." 

ta 0= L (R+r)-t 
R+r+tL' 

This solves the problem. If the radii are equal we have the 
familiar railway engineers' cross-over, and the results are 

L2-t2=4dR-d2, 

t ' 2R L-t ao-
2-R=---t-CL=-· 

[Elmo G. Ha17'is.] 
[Also by TV. O. Whitescarnerand Charles PlI7:ycar.] 

5. 
Two straight lines 0 P and 0 Q are of lengths b' and a re

spectively. From P a perpendicular P M is drawn to 0 Q and 
equal to it, cutting it at N. Show that the equation to the lo
cus of P, as the point N moves on 0 Q and the point M on 
Q M, referred to 0 Q and 0 P as axes of ~\' andy respectively, is 

.,\,2 y2 

a'2 + b'2=I. [TV H. Eclzols.] 

SOLUTION. 

Let P' N' M' be any position of the moving line. Let the 
angle between M 0 produced and P Q be (t). Find the equa
tion to the locus of.P' referred to these as axes of y' and .x' 

respectively. Thus, drawing the ordinate P' A y', the tri
angles 0 N' M' and N' P' A give 

or 

o N'+N' A_M' N'+N' P 
-N~-- N'P' 

b' , . 
N' A= ;:t' 51 fI. , 

a' 
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where a=POQ. 

The triangle N' P' A gives 

N'P'2= b'2 sFa = y'2+N'A 2+ 2 N'Ay co w, 

b' <) I ') ~ 2 b' ~.' , 
_ '2 + - x - SI (1 + 2 co W SI a x y -y '2 .- , J 

a a 

or b'2 ·2 b' . '2+ SI (J. '2+ 2 co w S1 a " b'2·2 Y --'-2- z , zy = SI fl., 
a a 

as the equation to the locus referred to 0 Q and 0 M. 
form this to the axes 0 P and 0 Q as y and x axes, 
transformation formulae 

, si (w-a) 
,~ = z + y ---'~.:----'

S1 (IJ 

and divide through by si 2a. 

Thus the equation to the locus is 

si a 
y=y-. -, 

SI (IJ 

Trans
by the 

'2 ·2( 0.) s· ( ) a'2 b'2=~ y2+b'2 [z2+ 51 ~-. )'2+2 1 ~O-IJ. xy] 
512W 512(0 51 (0 

+ 'b' ( x Y 2 5i ( w-'-o.) J 2a co w -. -+y . . 
51 W SI 2 (0 

2 area 0 P M = a' b' co fl., 

also = 0 M·OP si (rr-w+fI.), 

or b'2 co (J. si (rr-w+a) 
co w 

Therefore . ( ) a' SI W-(J. = -71 co (0. 

Substituting this value in the equation above, it reduces read
ily to the required form 

a'2 y2+b'2 x 2 = a'2 b'2. 

[Charles P. Echols.] 
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6. 

Regarding the portion of the tangent to the hyperbola inter
cepted by the asymptotes as one diagonal of a square, what are 
the loci of the extremities of its other diagonal? 

[W H. Echols.] 

SOLUTION. 

Consider the point on the convex side of the curve, its dis
tance from the tangent is evidently equal to the semi-diameter 
conjugate to that drawn through the point of contact (x', y') of 
the tangent to the hyperbola. 

Let r be the a.ngle between these conjugate diameters of the 
hyperbola, whose center is 0, and p the distance of the point 
whose locus is sought from O. Refer the locus to the axes or 
the hyperbola as coordinate axes. 

The equation to the hyperbola is 
b'2 x'2-a2 y2 = a2 b2. 

The relations between the diameters are 

a'2+b'2 = a2+b2, } 

a' b' si r = a b. 

From the triangle (00, x y, :>/ y') we have 

p2=.x2+y2 =a'2+b'2_2a' b' si r, 

(1) 

(2) 

.'. X2+y2 =.a''2+b'2_2a b. - (3) 

Combining (1), (2) and (3}--we have 

But 

and 

Hence 

'2 b2 [9+ 9 ( b' 2] Y = 2(d+~) x- y-- a- ) • 

£2= 2(~~~) [X2+y2+ (a+b)2J. 

(X-X')2+(y_y')2 = b'2, 
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Which squared gives 

,,; x'2+1-y'2_t(x2+I+a2_b2/ = -2X y x' y'. (4) 
The equation of the normal is 

a2 z y' +b2y x' = (d+b2) x' y', 
which when squared is 

a 4 x2y'2+b4y2 z'2-(a2+b2?x'2 y'; = -2a2 b2 x y x' y'. (5) 

Combining (4) and (5) to eliminate x y x' y', and substituting 
in the resulting equation the values for X'2 and y'2 as obtained 
above we readily reduce the equation of the locus 

., 2 

~-- Y '-1 
(a-bl (a+b)2 - , 

In like manner the equation to the locus of the other ex
tremity of the diagonal would have been found to be 

x2 y2 
-;--=:.....,=:- = I. (a-t b)2 (a-b)~ 

[w. H. Eclzols.] 
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EXERCISES. 

7. 

On the sides of a triangle T, equilateral triangles are des
cribed, all outwards or all inwards. We thus get two new tri

angles T1• T 2• Show that 

(I). J 1+J2 = 5J , 

where .;1, .11. L/2 are the areas. 

(2). The maximum inscribed ellipses of Tl and T2 are con
focal. [Frank Morley.] 

8. 

In the Cassin ian r rl = h2 the angle between the central 
radius and one focal radius is equal to that between the other 
focal radius and the normal. [Frank Morley. ] 

9. 

Solv<; the equations 

.1..2+yz =a.x+bc, 

y2+Z x = b y+c a, 

Z2+ xy = c z+a b. 

10. 

[Frank Morley.] 

A 100 foot steel trtpe is longer than standard, so that at a 
certain temperature the tape measures a horizontal chord of 
100 standard feet under a pull of 16 pounds supported at its 
ends. Find the pull that will give 40, 50 and in general 
D « 100) standard foot horizontal chords, at same temper
ature, when the tape is supported at each end of the 40, 50, D 
foot graduations. [w. O. Whz"tescarver.] 
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11. 

A particle is set free at the highest point of a smooth sphere 
which stands .on a horizontal plane. The particle slightly dis
turbed begins to move in a certaim, direction, where does it 
meet the plane and what is the duration of motion? 

[Elmo G. Harris.] 

1'> .;.J. 

A smooth tube bent to the shape of a semi-ellipse is fixed in 
a vertical plane, its major axis horizontal, its semi-minor axis 
upward. A heavy flexible string passing through the tube and 
hanging ot rest is cut at one end of the tube. What is t.he ve
locity ofthe string as it leaves the tube? [W H. Echols.] 

13. 

Given on the ground a circular c.urve of known radius inter
secting a given straight line at a given point and given angle; 
it is required to unite the two by another circular curve of 
given radius. [W H. EcllOls.] 

14. 

Given on the ground a ci(cularcurve of known radius inter
secting a given straight line at a given point and given angle; 
it is required to unite the two by another circular curve of 
given radius in such a ma.nner as to have acommQn tangent of 
length t between the curves. [W H. Echols.] 

15. 

[W H. Eckols.] 
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SELECTED. CONSTRUCTIVE PROBLEMS J:'(f ELEMENTARY GEOMETRY. 

16. 

Construct the triangle ABC which is similar to the given 
triangle L M N and which projects orthogonally upon a plane 
into the given triangle A' B' C. 

17. 

Of the three concurrent edges a, b, c of a cube, the orthogo
nal projections on a plane a', b' of two are known, it is required 
to construct the projection of the cube. 

18. 

Of the three concurrent edges a, b, c of a cube, the ortho
gonal projection on a plane, a' of one and the directions of the 
projections of the other two are known, it is required to COIl· 

struct the projection of the cube. 

19. 
Of the three concurrent edges a, b, c of a cube, the ortho

gonal projection on a plane a' of one, the lengths of the ortho
gonal projections of the other two are kno~n, it is required to 
construct the projection of the cube. 

20. 

Of the three concurrent edges a, b, c of a cube the ortho
gonal projection on a plane a' of one, the length of the ortho
gonal projection of another and the direction of the projection 
of the third is known, it is required to construct the projection 
of the cube. 
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