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TRANSLATOR’S PREFACE.

Lobatschewsky was the first man ever to publish a non-
Euclidian geometry.

Of the immortal essay now first appearing in English Gauss
said, “the author has treated the matter with a master-hand
and in the true geometer’s spirit. I think I ought to call your
attention to this book, whose perusal cannot fail to give you
the most vivid pleasure.”

Clifford says, “It is quite simple, merely Euclid without the
vicious assumption, but the way things come out of one another
is quite lovely.” . . . “What Vesalius was to Galen, what
Copernicus was to Ptolemy, that was ILobatschewsky to
Euclid.”

Says Sylvester: “In Quaternions the example has been
given of Algebra released from the yoke of the commutative
principle of multiplication—an emancipation somewhat akin to
Lobatschewsky's of Geometry from Euclid's noted empirical
axiom.”

Cayley says, “It is well known that Euclid’s twelfth axiom,
even in Playfair's form of it, has been considered as needing
demonstration ; and that Lobatschewsky constructed a perfect-
ly consistent theory, wherein this axiom was assumed not to -
hold good, or say a system of non-Euclidian plane geometry.
There is a like system of non-Euclidian solid geometry.”

GEORGE BRUCE HALSTEAD.



THEORY OF PARALLELS.

In geometry I find certain imperfections which I hold to be
the reason why this science, apart from transition into analytics,
can as yet make no advance from that state in which it has
come to us from Euclid.

As belongin.g to these imperfections, I consider the obscuri-
ty in the fundamental concepts of the geometrical magnitudes
and in the manner and method of representing the measuring
of these magnitudes, and finally the' momentous gap in the the-
ory of parallels, to fill which all efforts of mathematicians have
been so far in vain.

For this theory Legendre’s endeavors have done nothing,
since he was forced to leave the only rigid way, to turn into a
side path, and take refuge in auxiliary theorems which he il-
logically strove to exhibit as necessary axioms. My first essay
on the foundations of geometry I published in the Kasan Mes-
senger for the year 1829. In the hope of having satisfied all
requirements, I undertook hereupon a treatment of the whole
of this science, and published my work in separate parts in the
“Gelehrten Schriften der Universitat Kasan” for the years 1836,
1837, 1838, under the title “New Elements of Geometry, with
a complete Theory of Parallels.” The extent of this work per-
haps hindered my countrymen from following such a subject,
which since Legendre had lost its interest. Yet am I of the
opinion, that the Theory of Parallels should not lose its claim
to the attention of geometers, and therefore I aim to give here
the substance of my investigations, remarking beforehand that
contrary to the opinion of Legendre, all other imperfections, for
_example the definition of the straight line, show themselves for-

eign here and without any real influence on the theory of par-
allels. :
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In order not to fatigue my reader with the multitude of those
theorems whose proofs present no difficulties, I prefix here only
those of which a knowledge is necessary for what follows.

1. A straight line fits upon itself in all its positions. By
this I mean, that during the revolution of the surface containing
it the straight line does not change its place if it goes through
two unmoving points in the surface: (7. e. if we turn the sur-
face containing it about two points of the line, the line does not
move.)

2. Two straight lines cannot intersect in two points.

3. A straight line sufficiently produced both ways must go
out beyond all bounds, and in such way cuts a bounded plain
into two parts.

4. Two straight lines perpendicular to a third, never inter-
sect, how far soever they be produced.

5. A straight line always cuts another in going from one
side of it over to the other side: (7. e. one straight line must
cut another if it has points on both sides of it:)

6. Vertical angles, where the sides of one are productions
of the sides of the other, are equal. This holds of plane recti-
lineal angles among themselves, as also of plane surface angles,
(<. . dihedral angles.)

7. Two straight lines cannot intersect, if a third cuts them
at the same angle.

8. In a rectilineal triangle, equal sides lie opposite equal
angles, and inversely.

9. In a rectilineal triangle, a greater side lies opposite a
greater angle. Ina right-angled triangle the hypothenuse is
greater than either of the other sides, and the two angles adja-
cent to it are acute.

10. Rectilineal triangles are congruent if they have a side
and two angles equal, or two sides and the included angle
equal, or two sides and the angle opposite the greater equal, or
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three sides equal.

11. A straight line which stands at right angles upon two
other straight lines not in one plane with it, is perpendicular to
all straight lines drawn through the common intersection point
in the plane of those two.

12. The intersection of a sphere with a plane is a circle.

13. A straight line at right angles to the intersection of two
perpendicular planes, and in one, is perpendicular to the other.

14. In a spherical triangle, equal sides lie opposite equal
angles, and inversely.

15. Spherical triangles are congruent, [or symmetrical], if
they have two sides and the included angle equal, or a side and
the adjacent angles equal.

From here follow the other theorems with their explanations
and proofs.

16. All straight lines, which, in a plane, go out from a point,
can with reference to a given straight line in the same plane, be
divided into two classes, into cutting and not-cutiing.

The boundary lines of the one and the other class of those
lines will be called parallel to the given line.

From the point A (Fig. 1.)let fall upon . E g c
% :
the line BC the perpendicular AD, to f
which again draw the perpendicular AE. i

In the right angle EAD either will all
straight lines which go out from the point
A meet the line DC, as for example A
AF, or some of them, like the
perpendicular AE, will not meet the
line DC. Inthe uncertamty, whether the
perpendicular AE is the only line which d & i
does not meet DC, we will assume it may ’ FiG. 1.
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be possible that there are still other lines, for éxample AG, which
do not cut DC, how far so ever they may be prolonged. In passing
over from the cutting lines, as AT, to the not-cutting lines, as AG,
we must come upon a line AH, parallel to DC, a boundary line,
upon one side of which all lines AG are such as do not meet
the line DC, while upon the other side every straight line AF

cuts the line DC.

The angle HAD between the parallel HA and the perpen-
dicular AD is called the parallel-angle (angle of parallelism),
which we will here designate by //(p) for AD = p.

If /I(p) is a right angle, so will the prolongation AE’ of the
perpendicular AE likewise be parallel to the prolongation DB
of the line DC; in addition to which we remark, that in regard
to the four right angles, which are made at the point A by the
perpendiculars AE and AD, and their prolongations AE’ and
AD’, every straight line which goes out from the point A, eith-
er itself, or at least its prolongation, lies in one of the two right
angles which are turned toward BC, so that except the parallel,
EE’, all others if they are sufficiently produced both ways,
must intersect the line BC.

If /l(p) < 4 =, then upon the other side of AD, making the
same angle DAK = //(p) will lie also a line AK, parallel to
the prolongation DB of the line DC, so that under this assump-
tion we must also make a distinction of sides 7z parallelism,

All remaining lines.or their prolongations, within the two
right angles turned toward BC, pertain to those that intersect,
if they lie within the angle HAK == 2/l(p) between the paral-
lels; they pertain on the other hand to the non-intersecting,
AG, if they lie upon the other sides of the parallels AH and
AK, in the opening of the two angles EAK = 4 = — /I(p),
E'AK =}z — /I(p), between the parallels and EE’ the per-
pendicular to AD.  Upon the other side of the perpendicular
EE’ will in like manfier the prolongations AH' and AK’ of the
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parallels AH and AK likewise be parallel to BC; the remain-
ing lines pertain, if in the angle K'AH’, to the intersecting, but
if in the angles K'AE, H'AE' to the non-intersecting.

In accordance with this, for the assumption //(p) = ¥ 7,
the lines can be only intersecting or parallel; but if we assume
that /7(p)<3=, then we must allow two parallels, one on the
onc and one on the other side; in addition we must distinguish
the remaining lines into non-intersecting and intersecting.

For both assumptions it serves as the mark of parallelism that
the line becomes intersecting for the smallest deviation toward
the side where lies the parallel, so that if AH is parallel to DC,
every line AF cuts DC, how small soever the angle HAF may be.

17. A straight line maintains the characteristic of parallelism
at all its points,

Given AB (Fig 2.) parallel to CD, to which latter AC is per-

E A E

B
F F

7 T ¥ " re— D

: ' , FiG. 2.

pendicular. We will consider two points taken at random on
the line AB and its production beyond the perpendicular.

Let the point Elie on that side of the perpendicular on
which AB is looked upon as parallel to CD.

Let fall from the point E a perpendicular EK on CD and
so draw EF that it falls within the angle BEK.

Connect the points A and F by a straight line, whose pro-
duction then (by Theorem 16) must cut CD somewhere in G.
Thus we get a triangle ACG, into which the line EF goes;
now since this latter, from the construction, cannot cut AC, and
cannot cut AG or EX a second time (Theorem 2.) therefore it

must meet CD somewhere at H (Theorem 3.)

§
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Now let E’ be a point on the production of AB and E'K’
perpendi ‘ular to the production of the line CD; draw the line
E'F' making so small an angle AE'F’ that it cuts AC some-
where in F'; making the same angle with AB draw also from
A the line AF. whose production will cut CD in G, (Theorem 16.)

Thus we get a triangle AGC, into which goes the production
of the line E'F’; since now this line ca~not cut AE a second
time, and also cannot cut AG, since the angle BAG = BE'O’,
(Theorem 7 ) therefore must it meet CD somewhere in G'.

Therefore from whatever points E and E’ the lines EF and
E'F’ go out, and however little they may diverge from the line
AB, yet will they always cut CD, to which AB is parallel.

18.  Two lines are always mutually parallel.

Let AC be a perpen-  Ax—

dicular on CD to which N s
AB is parallel; if we £
draw from C the line
CE making any acute >
angle ECD with CD, y
and let fall from A the g L H
perpendicular AF upon I e

CE, we obtain a right- FiG. 3.

D

angled triangle ACF, in which AC, being the hypothenuse, is
greater than the side AF, (Theorem 9.)

Make AG = AF, and slide the figure EFAB until AF coin-
cides with AG, when AB and FE will take the position AK
and GH, such that the angle BAK == FAC, consequently AK
must cut the line DC somewhere in K, (Theorem (16), thus
forming a triangle AKC, on one side of which the perpendicu-
lar GH intersects the line AK in L, (Theorem 3), and thus de-
termines the distance AL of the intersection point of the lines
AB and CE on the line AB from the point A.

Hence it follows, that CE will always intersect AB, how
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small soever may be the angle ECD, consequently CD is paral-
lei to AB, (Theorem 16).

19.  7n a rectilineal triangle the sum of the three angles cannot
be greater than two right angles.

Suppose in the triangle B E

ABC (Figure 4.) the sum of
the three angles is equal to 2
7m+a; then choose in case
of the inequality of the sides, , &
the smallest BC, halve it in ' F1G. 4.

D, draw from A through D the line AD and make the prolon-
gation of it, DE, equal to AD, then join the point E to the
point C by the straight line EC. In the congruent triangles
ADB and CDE, the angle ABD = DCE, and BAD = DEC,
(Therems 6 and 10); whence follows that also in the triangle
ACY. the sum of the three angles must be equal to = + «; but
also the smallest angle BAC (Theorem 9), of the triangle ABC
in passing over into the new triangle ACE has been cut up into
the two parts EAC and AEC. Continuing this process, con-
tinually halving the side opposite the smallest angle, we must
finally attain to a triangle in which the sum of the three angles
is 7.+ «, but wherein are two angles, each of which, in abso-
Tute magnitude, is less than $7; since now, however, the third
angle cannot be greater than =, so must « be either null or neg-

ative.
20. [f in any rectilineal triangle the sum of the three angles

is equal to two right angles, so is also the case for every other

triangle. ‘

If in the rectilineal triangle ABC B
(Fig. 5.) the sum of the three angles /‘T\
= 7, then must at least two of its an- g ¢
gles, A and C, be acute. Let fall ‘FiG. 3.

from the vertex of the third angle B upon the opposite side
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N

AC the perpendicular p. This will cut the triangle into two
right-angled triangles, in each of which the sum of three angles
must also be 7, since it cannot in either be greater than =, and
in their combination not less than =.

So we obtain a right-angled triangle with the perpendicular
sides p and q, and from this a quadrilateral whose opposite
sides are equal and whose adjacent sides p and q are at right
angles (Fig. 6).

By repetition of this quadrilateral we can make another
with sides np and g, and finally a quadrilateral ABCD with
sides at right angles to each other, such that AB == np,

A D
1 4 1 4
I3 P
q

w
p)

FiG. 6.

AD = mq, DC = np, BC = mq, where m and n are any
whole numbers. Such a quadrilateral is divided by the diag-
onal DB into two congruent right angled triangles BAD and
BCD, in each of which the sum of the three angles is = =.

The numbers n and m can be taken sufficiently great for the
right-angled triangle ABC (Fig. 7.) whose perpendicular sides
AB = np, BC = mq, to enclose within itself another given tri-
angle BDE as soon as the right angles fit each other.

Drawing the line DC, we obtain right angled triangles of
which every successive two have a side in common.

The triangle ABC is formed by the union of the two trian-
gles ACD and DCB, in neither of which can the sum of the
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angles be greater than 7; consequently it must be equal to T,

in order that the sum in the compound triangle may be equal
tom -

D
Fic. ;.
In the same way the triangle BDC consists of the two tri-
angles DEC and DBE, consequently must in DBE the sum of
the three angles be equal to =, and in general this must be true
for every triangle since each can be cut into two right-angled
triangles. : ‘
From this it follows that only two hypotheses are allowable :
~ ‘either is the sum of the three angles in all rectilineal triangles
equal to 7, or this sum is in all less than .
21. From a given point we can always draw a straight line
that shall make with a given straight line an angle as small as
e choose. :
Let fall from the given point A (Fig. 8.) upon the given line
A :

Fic. 8.
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BC the perpendicular AB; take upon BC, at random, the
point D; draw the line AD ; make DE = AD, and draw AE.
In the right-angled triangle ABI) let the angle ADB = «;
then mustinth2 isoscelestriangle ADE the angle AED be either
w4 or less, (Theorems 8 and 20). Continuing thus we finally at-
tain to such an angle AEB, as is less than any given angle.

2. If two perpendicrlars fo the same straight line nre paral-
lel to cack other, then the sum of the three angles in a rectilineal
triangle 1s equal fo two right a;zg/es

Let the lines AB and CD B
(Fig.9.) be parallel to each
other and perpendicular to

AC.

Draw from A the lines
AE and AF to the points © ¥ ¥ D
E and F, which are taken Fia. .

on the line CD at any distances FC >EC from the point C.

Suppose in the right angled triangle ACE the sum of the
three angles is equal to =—«, in the triangle AEF equal to
7=—3, then must it in triangle ACF equal z—a— 7 where « and
,7 cannot be negative.

Further, let the angle BAF = 4, AFC =6, so is a- /7
= @—0; now by revolving the line AF away from the perpen-
dicular AC we can make the angle a between AF and the par-
allel AB as small as we choose; so also can we lessen the angle
b4, consequently the two angles « and ¥ can have no other mag-
nitude than « = 0 and 7 = o.

It follows that in all rectilineal triangles the sum of the three
angles is e1ther 7 and at the same time also the parallel angle
/l{p) = 4= for every line p, or for aII triangles this sum is < =
and at the same time also f/(p) <ix=

The first assumption serves as foundation for the ordinary
geometry and plane trigonometry.
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The second assumption can likewise be admitted without
leading to any contradiction in the results, and founds a new
geometric science, to which I have given the name, /magin-
ary Geometry, and which I intend here to expound as far asthe
development of the equations between the sides and angles of
the rectilineal and spherical triangle.

3. For every given angle u we can find a line p, such that
l(p) = « '

Let AB and AC (Fig. 10.) be two straight lines which at
the intersection-pomnt A make the acute angle «; take at ran-
dom on AB a point B'; from this point drop B'A" at right an-
gles to AC; make A’A" = AA’; erect at A" the perpendicular
A"B"; and so continue until a perpendicular CD is attained,

I
»

4 s X ¥ C
FiG. 10.

which no longer intersects AB. This must of necessity hap-
pen, for if in the triangle AA'B’ the sum of all three angles is
equal to 7—a, then in the triangle AB'A” it equals =—2¢a, in
triangle AA"B” less than #—2a (Theorem 20), and so forth,
until it finally becomes negative and thereby shows the impos-
sibility of constructing the triangle.

The perpendicular CD may be the very one nearer than
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which to the point A all others cut AB; at least in the passing
over from those that cut to those not cutting such a perpendic-
ular FG must exist.

Draw now from the point F the line FH, which makes with
FG the acute angle HFG, on that side where lies the point A.
From any point H of the line FH let fall upon AC the perpen-
dicular HK, whose prolongation consequently must cut AB
somewhere in B, and so makes a triangle AKB, into which the
prolongation of the line FH enters, and therefore must meet
the hypothenuse AB somewhere in M.  Since the angle GFH
is arbitrary, and can be taken as small as we wish, therefore FG
is parallel to AB and AF = p (Theorems 16 and 18.)

One easily sees, that with the lessening of p the angle « in-
creases, while, for p = 0, it approaches the value 37; with the
growth of p the angle « decreases, while it continually ap-
proaches zero for p = «.

Since we are wholly at liberty to choose what angle we will
understand by the symbol //(p) when the line p is expressed
by a negative number, so we will assume

M(p) + 1I(— p)=r.
an equation which shall hold for all values of p, positive as well
as negative, and for p = o.
24, The farther parallel lines are prolonged on the side of
their pavallelism, the more they approach one another.

If to the line AB (Fig. 11.) ¢ ¥ B
two perpendiculars AC = BE N

are erected, and their end-

points C and E joined by a
straight line, then will the & D B
quadrilateral CABE have two Fic 11.

right angles at A and B, but two acute angles at Cand E
(Theorem 22,) which are equal to one another, as we can easily
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see by thinking the quadrilateral superimposed upon itself so
that the line BE falls upon AC and AC upon BE.

Halve AB and erect at the mid-point D the line DF perpen-
dicular to AB. This line must also be perpendicular to CE,
since the quadrilaterals CADF and FDBE fit one another if
we so place one on the other that the line DF remains in the
same position. Hence the line CE cannot be parallel to AB,
but the parallel to AB for the point C, namely CG, mustincline
toward AB (Theorem 16), and cut from the perpendicular BE
a part BG< CA. ‘

Since C is a random point in the line CG, it follows that CG
itself nears AB the more the farther it is prolonged.

25. Two straight lines which are parallel to a third, ave also
paraliel to one another.

Fic. 12.

We will first assume that the three lines AB, CD, EF, (Fig.
12.) lie in one plane. If two of them in order AB and CD are
parallel to the outmost one EF, so are AB and CD parallel to
one another. In order to prove this, let fall from any point A
of the outer line AB, upon the other outer line FE, the perpen-
dicular AE, which will cut the middle line CD in some point C
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(Theorem 3), at an angle DCE< %z on the side toward EF the
parallel to CD (Theorem 22).

A perpendicular AG let fall upon CD from the same point A,
must fall within the opening of the acute angle ACG (Theorem
9): every other line AH from A drawn within the angle BAC,
must cut EF, the parallel to AB, somewhere in H, how small
suever the angle BAH may be; consequently will CD in the
triangle AEH -ut the line AH somewhere in K, since it is im-
possible that it should meet EF. If AH from the point A
went out within the angle CAG, then must it cut the prolonga-
tion of CD between the points C and G in the triangle CAG.
Hence follows, that ABand CD are parallel(Theorems 16 and 18).

Were both the outer lines AB and EF assumed parallel to
the middle line CD, so would every li~e AK from the point A,
drawn within the angle BAE, cut the line CD somewhere in
the point K, how small soever the angle BAK might be.

Upon the prolongation of AK take at random a point L. and
join it with C by the line CL, which must cut EF somewhere
in M, thus making a triangle MCE.

The prolongation of the line AL within the triangle MCE
can cut neither AC nor CM a second time, consequently it must
meet EF somewhere in H: therefore AB and EF are mutually
parallel.

—5 B B

.

Fia. 13.

c

Let now the parallels AB and CD (Fig. 13.) lie in two
planes whose intersection line is EF.  From a random point E
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of this latter let falla perpendicular EA upon one of the two
parallels, ¢. g., upon AB, thenfrom A the foot of the perpendic-
ular EA, let fall a new perpendicular AC upon the othe rparallcl
CD and join the end-points Eand C of the two perpendiculars by
the line EC. The angle BAC must be acute (Theorem 22),
consequently a perpendicular CG from C let fall upon AB meets
it in the point G upon that side of CA on which the lines AB
and CD are considered as parallel. v

Every line EH [in the plane FEAB]. however little it di-
verges from EF, pertains with the line EC to a plane which
must cut the plane of the two parallels AB and CD along some
line CH. This latter line cuts AB somewhere, and in fact
in the very point H which is common to all three planes,
through which necessarily also the line EH goes; consequent-
ly EF is parallel to AB.

In the same way we may show the parallelism of EF and
CD. ) 7

Therefore the hypothesis, that a line EF is parallel to one of
two other parallels, AB and CD, is the same as considering EF
as the intersection of two planesin which two parallels AB, CD,
lie.

Consequently two lines are parallel to one another if they
are parallel to a third line, though the three be not co-planar

The last theorem can be thus expressed:

Thiee planes intersect in lines which are all parallel to each
other if the parallelism of two is pre-supposed.

R6. Triangles standing opposile to one another on the sphere
are equivalent in surface.

By opposite triangles we here understand such as are made
on both sides’of the ceuter by the intersections of the sphere
with planes; in such triangles therefore the sides and angles
are in contrary order.

In the opposite triangles ABC and A'B'C’ (Fig. 14., where
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one of them must be looked upon as represented turned about),

we have the sides AB = A'B’, BC = B'C’, CA == C’'A" and the

corresponding angles at the points A, B, C, are likewise equal
B B!

>
FiG. 14.
t> those in the other triangle at the points A\’, B, C.

Through the three points A, B, C, suppose a plane passed
and upon it from the center of the sphere a perpendicular drop-
ped, whose prolongations both ways cut both opposite triangles
in the points D and D of the sphere. The distances of the -
first D from the points A B C, in arcs of great circles on the
sphere, must be equal (Theorem 12), as well to each other as
also to the distances D'A’, D'B, D’C’, on the other triangle
(Theorem 6), consequently the isosceles triangles about the
points D and D’ in the two spherical triangles ABC and A'B'C’
- are congruent.

In order to judge of the equivalence of any two surfaces in
general | take the following theorem as fundamental :

Two surfaces are equivalent wohen they arise from the mating
or separating of equal parts.

2%, A three-sided solid angle equals the half sum of the sur-
face angles less a right angle.

In the spherical triangle ABC (Fig. 15.), where each side
= 7, designate the angles by A, B, C; prolong the side AB so
that a whole circle ABA'B’A is produced ; this divides the
sphere into two equal parts.

In that half in which is the triangle ABC, prolong now the
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.other two sides through their common intersection point C, un-

til they meet the circle in A’ and B'.
c

&
Fie. 15.

In this way the hemisphere is divided into four triangles.
ABC, ACB, B'CA’ A'CB, whose size may be designated by
P, X, Y, Z. Itis evident that here P+X=B, P+Z=A.

The size of the spherical triangle Y equals that of the oppo-
site triangle ABC’, having a side AB in common with the tri-
angle P, and whose third angle C’ lies at the end-point of the
diameter of the sphere which goes from C through the center
D of the sphere (Theorem 26). Hence it follows that

P+ Y=C, and since P+ X + Y + Z=n; therefore we have also,
=4{(A+B+C—x).

We may attain to the same conclusion in another way, based
solely upon the theorem about the equivalence of surfaces given
above, (Theorem 26).

In the spherical triangle ABC
(Fig. 16.) halve the sides AB
and BC, and through the mid-
points D and E draw a great cir-
cle; upon this let fall from A, B,
C, the perpendiculars AF, BH,
- and CG. If the perpendicular
from B falls at H between D and Fic. 16.
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E, then will of the triangles so made BDH = AFD, and BHE
— EGC, (Theorems 6 and 15), whence follows that the surface
of the triangle ABC equals that of the quadrilateral AFGC
(Theorem -6).

If the point H coincides with the mid- B
dle point E of the side BC (Fig. 17.), F D
only two equal right angled triangles E
AFD and BDE are made, by whose in-
c

terchange the equivalence of the surfaces
of the triangle ABC and the quadrilateral FiG. 17.
AFEC is established.

If, finally, the point H falls outside the triangle ABC, (Fig.
18), the perpendicular CG, goes, in consequence, through the
triangle, and so we go over from the triangle ABC to the quad-

B

A o
Fic. 18.
rilateral AFGC by adding the triangle FAD = DBH, and
then taking away the triangle CGE = EBH.

Supposing in the spherical quadrilateral AEGC a great circle
passed through the points A\ and G, as also through F and C,
then will their arcs between AG and FC equal one another,
(Theorem 13), consequently also the triangles FAC and ACG
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be congruent (Theorem 15), and the angle FAC equal the an-
gle ACG.

Hence follows, that in all the preceding cases, the sum of all
three angles of the spherical.triangle equals the sum of the two
equal angles in the quadrilateral which are not the right angles.

Therefore we can, for every spherical triangle, in which the
sum of the three angles is S, find a quadrilateral with equivalent
surface, in which are two right angles and two equal perpen-
dicular sides, and where the two other angles are each 3S.

Let now ABCD (Fig. 19.) be the spherical quadrilateral,
where the sides AB = DC are perpendicular to BC, and the
angles A and D each 3S.

B H

A 0 %
Fie. 19
Prolong the sides AD and BC until they cut one another in
E, and further beyond E, make DE = EF and let fall upon the
prolongation of BC the perpendicular FG. Bisect the whole
arc BG and join the mid-point H by great-circle-arcs with A
and F.
The triangles EFG and DCE are congruent (Theorem 15),
so FG = DC = AB.
The triangles ABH and HGF are likewise congruent, since
they are right angled and have equal perpendicular sides, con-
sequently AH and AF pertain to oxe circle, the arc AHF =7,

ADEF likewise == =, the angle HAD = HFE = §S—BAH
=1S—HFG = 1S - HFE — HFG = {S — HAD —=—15;
consequently, angle HFE = 4(S—x); or what is the same, this

equals the size of the lune AHFDA, which again is equal to
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the quadrilateral ABCD, as we easily see if we pass over from
the one to the other by first adding the triangle EFG and then
BAH and thereupon taking away the triangles equal to them
DCE and HFG.

Therefore £(S—=) is the size of the quadrilateral ABCD
and at the same time also that of the spherical triangle in which
the sum of the three angles is equal to S.

28, [f thice plancs cut cach other in parallel lines, then the
sum of the three surface angles equals two right angles.

Let AA’, BB' CC’ (Fig. 20.) be three parallels made by the

intersection of planes (Theorem 25). Take upon them at ran-
dom three points A, B, C, and suppose through these a plane
A
A!
T,
B D B’
m
pl
0,
FiG. zo0.

passed, which consequently will cut the planes of the parallels
along the straight lines AB, AC, and BC. Further, pass
through the line AC and any point D on the BB’, another
plane, whose intersection with the two planes of the parallels
AA"and BB, CC" and BB’ produces the two lines AD and DC,
and whose inclination to the third plane of the parallels AA’
and CC' we will designate by 7.

The angles between the three planes in which the parallels
lie will be designated by X, Y, Z, respectively atthe lines AA’,
BB, CC finally call the linear angles BDC = 4, ADC = ,
ADB = .

About A as center suppose a sphere described, upon which
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the intersections of the straight lines AC, AD AA’ with it de-
termine a spherical triangle, with the sides p, g, and r.  Call
its size «. Opposite the side q lies the angle ze, opposite r lies
X, and consequently opposite p lies the angle 7+2z-w—X,
(Theorem 2%).

In like manner CA, CD, CC’ cut a sphere about the center
C, and determining a triangle of size j3, with the angles p/, ¢/,
', and the angles, @ opposite q', Z opposite r’, and consequent-
ly =+23—w—Z opposite p'.

Finally is determined by the intersection of a sphere about
D with the lines DA, DB, DC, a spherical triangle, whose sides
are 1, m, n, and the angles opposite them w-+Z—273, w+ X—27,
and Y. Consequently its size 0 =3(X+Y+Z—x)—a—3+w.

Decreasing 7 lessens also the size of the triangles « and 3,
so that «+ 3+ can be made smaller than any given number.

In the triangle 4 can likewise the sides | and m be lessened
even to vanishing (Theorem 21), consequently the triangle 4
can be placed with one of its sides 1 or m upon a great circle
of the sphere as often as you choose without thereby filling up
the half of the sphere, hence ¢ wvanishes together with «;
whence follows that necessarily we must have

X+Y+Z=nr
29. In a rectilineal triangle, the perpendiculars erected at the
mid-points of the sides cither do not meet, or they all three cut
each other in one point.

Having pre-supposed in the triangle ABC (Fig. 21), that the
two perpendiculars ED and DF, which are erected upon the
sides AB and BC at their mid-points E and F, intersect in the
point D, then draw within the angles of the triangle the lines
DA, DB, DC.

In the congruent triangles ADE and BDE (Theorem 10},
we have AD = BD, thus follows also that BD = CD; the tri-
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angle ADC is hence isosceles, conse- B

quently the perpendicular dropped from
the vertex D upon the base AC falls up-
on G the mid-point of the base.

The proof remains unchanged also in A
the case when the intersection point D 4 G e
of the two perpendiculars ED and FD FiG. 21.
falls in the line AC itself. or falls without the triangle.

In case we therefore presuppose that two of those perpen-

diculars do not intersect, then also the third cannot meet with
them.

30.  The perpendiculars which are erected upon the sides of a
rectilineal triangle at their mid-points, must all three be parallel
to each other, so soon as the parallelism of two of them is pre-
sepposed.

In the triangle ABC (Fig. 22.) let
the lines DE, FG, HK, be erected
perpendicular upon the sides at their
mid-points 1), F, H. We will in the
first place assume that the two per-
pendiculars DE and FG are parallel,
cutting the line AB in L. and M, and
that the perpendicular HK lies be-
tween them. Within the angle BLE draw from the point L at
random, a straight line LG, which must cut FG somewhere in
G, how small soever the angle of deviation GLE may be. (The-
orem 16).

Since in the triangle LGM the perpendicular HK cannot
meet with MG (Theorem 29), therefore it must cut LG some-
where in P, whence follows. that HK is parallel to DE (Theo—
rem 16), and to MG (Theorems 18 and 23).

Put in the side BC = 2a, AC = 2b, AB = 2¢, and desig-
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nate the angles opposite these sides by A, B, C, then we have
in the case just considered

A = JI(b) - 1I(c),

B = /1(a)—1I(c),

= fl(a)+ [I(b),

as one may easily show with help of the lines AA', BB, CC,
which are drawn from the points A, B, C, parallel to the per-
pendicular HK and consequently to both the other perpendic-
ulars DE and FG, (Theorems 23 and 25).

Let now the two perpendiculars HK and FG be parallel,
then can the third DE not cut them (Theorem 29), hence is it
either parallel to them, or it cuts AA".

The last assumption is not other than that the angle

c>1(a)+11(b.)

If we lessen this angle, so that it becomes equal to //(a)+ //(b),
while we in that way give the line AC the new position CQ,
(Fig. 23), and designate the size of the third side BQ by 2c/,
then must the angle CBQ at the point B, which is increased, in
accordance with what is proved above, be equal to

M(a)—1/(c") >1l(a)—1I(c),
whence follows ¢’ >c (Theorem 23).

A
c

B
FiG. 22.

In the triangle ACQ are, however, the angles at A and Q
equal, hence in the triangle ABQ must the angle at Q be
greater than that at the point A, consequently is AB>BQ,
(Theorem g); that is ¢ >c'.

31. We call boundary line (oricycle) that curve line lying in a
plane for which all peme’ndz'cizlam erected at the mid-points of
chords arc parallel to cack other.
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In conformity with this definition we can represent the gen-
eration of a boundary line, if we draw to a given line AB

Fic. 24.
(Fig 24.) from a given point‘ A in it, making different angles
CAB = //(a), chords AC = 2a; theend C of such a chord
will lie on the boundary line, whose points we can thus gradu-

ally determine.
The perpendicular DE erected upon the chord AC at its

mid-point D will be parallel to the line AB, which we will call
the Axis of the boundary line. In like manner will also each
perpendicular FG erected at the mid-point of any chord AH,
be parallel to AB, consequently must this peculiarity also per-
tain to every perpendicular KL in general which is erected at
the mid-point K of any chord CH, between whatever points C
and H of the boundary line this may be drawn (Theorem 30).
Such perpendiculars must therefore likewise, without distinc-
tion from AB, be called Axes of the boundary line.

32. A circle with continually increasing radius merges into
the boundary line.

Given AB (Fig. 25.) a chord of
the boundary line; draw from the
end-points A and B of the chord two
axes AC and BF’, which consequent-
ly will make with the chord two equal
angles BAC = ABF' = « (Theorem
31). : A E c

Upon one of these axes AC, take FiG. z5.
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anywhere the point E as center of a circle, and draw the arc
AF from the initial point A of the axis AC to its intersection
point F with the other axis BF'.

The radius of the circle, FE, corresponding to the point F
will make on the one side with the chord AF an angle AFE
= /, nnd on the other side with the axis BF' the angle EFF’
= y. It follows that the angle between the two chords BAF
= u—3<?+y—u (Theorem 22); whence follows, u—3<3y.

- Since now however the angle ; approaches the limit zero, as
well in consequence of a moving of the center E in the direc-
tion AC, when F remains unchanged, (Theorem 21), as also
in consequence of an approach of F to B on the axis BF, when
the center E remains in its position (Theorem 22), so it fol-
lows, that with such a lessening of the angle 7, also the angle
«~ 7, or the mutual inclination of the two chords AB and AF,
and hence also the distance of the point B on the boundary-
line from the point F on the circle, tends to vanish.

Consequently one may also call the boundary-line a circle
with infinitely great vadius.
33. Let AA’" = BB’ = x (Figure 26), be two lines paral-

B

lel toward the side from A to A’, which e %

parallels serve as axes for the two ’
boundary arcs (arcs on two boundary \ : A
lines) AB = 5, A'B’ = &, then is Fie. 26.

s = se¥ *

where € is independent of the arcs s, s* and of the straight
lines «x, the distance of the arc s from s.

In order to prove this, assume that the ratio of the arc s to
5" is equal to the ratio of the two whole numbers / and .

Between the two axes AA’, BB draw yet a third axis CC,
which so cuts off from the arc AB a part AC = ¢ and from the

. . L —X
# For this equation read § = se
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arc A'B’ on the same side. a part A'C' = ¢.  Assume the ra-
tio of 7 to s equal to that of the whole numbers p and ¢, so that
s=2¢, s=2
e q

Divide now s by axes into 7ng equal parts, then will there be
mg such parts on s and 7p on

However there correspond to these equal parts on s and ¢
likewise equal parts on 5" and ¢, consequently we have

£ s
t s

Hence also wherever the two arcs # and # may be taken be-
tween the two axes AA’ and BB/, the ratio of / to # remains
always the same, as long as the distance v between them re-
mains the same. If we therefore for & = 1, put s = eg, then
we must have for every x

5= ge¥,

Since € is an unknown number only subjected to the condi-
tion € > I, and further the linear unit for ~ may be taken at
will, therefore we may, for the simplification of reckoning, so
choose it that by @ is to be understood the base of the Napier-
ian logarithms. ‘

We may here remark, that 5 = o for v = «, hence not on-
ly does the distance between two parallels decrease (Theorem
24). but with the prolongation of the parallels toward the side
of the parallelism this at last wholly vanishes, Parallel lines
have therefore the character of asymptotes.

34.  Boundary surface (orisphere) we call that surface which
arises from the revolution of the boundary line about one of its
axes, which, together with all other axes of the boundary-line,
will be also an axis of the boundary-surface.

A chord is inclined at equal angles to such axes drawn
through its end-points, wheresoever these two end-points may be
taken on the boundary-surface. ’ ’
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Let A, B, C, (Fig. 27.), be three points on the boundary-
surface; AA’, the axis of revolution, BB' and CC’ two other

’
]
G

)

Fic 27.
axes, hence AB and AC chords to which the axes are iuclined
at equal angles A’AB = B'BA, A'/AC = C'CA (Theorem 31.)
Two axes BB, CC, drawn through the end-points . of the
third chord BC are hkewvse parallel a.nd lie in one. plane,
(Theorem 25). ‘ o -
A perpendxcular DD’ erected at the mid- -point . D of the
chord AB and in the plane of the two parallels AA’, BB',.must
be parallel to the three axes AA’, BB, CC’, (Theorems 23 and
23); just such a perpendicular EE’ upon the chord AC inthe
plane of the parallels AA’, CC' will be parallel to the three ax-
es AA’, BB, CC/, and the perpendicular DD". Let- now the
angle between the plane in which the parallels AA’ and BB
‘lie, and the plane of the triangle ABC be designated by (),
where @ may be positive, negative, or null.  If @ is positive,
then erect FD = a within the triangle ABC, and in its plane,
perpendicular upon the chord AB at its mid-point D. .
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Were 2 a negative number, then must FD = @ be drawn
outside the triangle on the other side of the chord AB; when
a =0, the point F coincides with D.

In all cases arise two congruent right-angled triangles AFD
and DFB, consequently we have FA = FB.

Erect now at F the line FF perpendicular to the plane of
the triangle ABC.

Since the angle D'DF = /I(a), and DF = a, so FF’ is paral-
lel to DD’ and the line EE’, with which also it lies in one plane
perpendicular to the plane of the triangle ABC.

Suppose now in the plane of the parallels EE, FF' upon EF
the perpendicular EK erected, then will this be also at right
angles to the plane of the triangle ABC, (Theorem 13), and to
the line AE lying in this plane, Theorem 11); and consequent-
ly must AE, which is perpendicular to EK and EE’, be also at
the same time perpendicular to FE, (Theorem 11). The tri-
angles AEF and FEC dre congruent, since they are right-an-
gled and have the sides about the right angles equal, hence is

AF = FC = FB.

A perpendicular from the vertex F of the isosceles triangle
BFC let fall upon the bass BC, goes through its mid-point G;
a plane passed through this perpendicular FG and the line FF’

“must be perpendicular to the plane of the triangle ABC, and
cuts the plane of the parallels BB’, CC’ along the line GG’,
which is likewise parallel to BB’ and CC’, (Theorem 25); since
now CG is at right angles to FG, and hence at the same
time also to GG, so consequently is the angle C'CG = B'BG,
{ Theorem 23 )

Hence follows, that for the boundary-surface each of the ax-
es may be considered as axis of revolution.

Principal-plane we will call each plane passed through an
axis of the boundary surface.

Accordingly every Principal-plane cuts the boundary-surface
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in the boundary line, while for another position of the cutting
plane this irftersection is a circle. ‘

Three principal planes which mutually cut each other, make
with each other angles whose sum is =, (Theorem 28).

These angles we will consider as angles in the boundary-tri-
angle whose sides are arcs of the boundary-line, which are
made on the boundary surface by the intersections' with the
‘three principal-planes. Consequently the same interdepend-
“ence of the angles and sides pertains to the boundary-triangles,
that is-proved in the ordinary geometry for the rectilineal tri-
angle.

- 35. In what follows, we will designate the size of a line by
a letter with an accent added, ¢. g. #/, in order to indicate that
this has a relation to that of another line, which is represented
by the same letter without accent x, which relation is given by
the equation :
I(x)+-11(x")=3=. ,

Let now ABC (Fig. 28.) be a rectilineal right angled trian-

gle, where the hypothenuse AB = ¢, the other sides AC = b,

C
Fi16. 28.

BC = 4, and the angles opposite them are
BAC = /l(a), ABC = [I(3).
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At the point A erect the line. AA’ at right angles to the
plane of the triangle ABC, and from the points B and C draw
BB’ and CC’ parallel to AA'.

The planes in which these three parallels lie make with each
other the angles: //(~) at AA’, a right angle at CC' (Theo-
rems 11 and 13), consequently /7(«') at BB’ (Theorem 28.)
~ The interséctions of the lines BA, BC, BB’ with a sphere de-
scribed about the point B as center, determine a spherical tr’-
angle mnk, in which the sides are mn = /1(c), kn = 11(3),

= /l(a) and the opposite a~gles are //(&), [I(«'), 13
Therefore we must, with the existence of a rectilineal _frian-
gle whose sides are «, 4, ¢, and the opposite angles /7(/1'),“/7(‘;?),
7, also admit the existence of a spherical triangle (Fig. 29.)
w1th the side //{c), //( 7), /1(a) and the opposite angles /7(6)
)y, 47,

F1G. 29.

Of these two triangles, however, also inversely the existence
of the spherical triangle necessitates anew that of a rectilineal,
which in consequence, also can have the sxdes a, «, 3, and the
opposite angles /7(4") 1l(c), %

Hence we may pass over from a, b.c,a, 3 t0b, ac 3
and also to a, « A

Suppose through the point A (Fig. 28.) with AA’ as axis, a
boundary-surface passed, which cuts the two other axes BB,
CC, in B” and C", and whose intersections with the planes of
the parallels form a boundary—trzangle whose sides are B"C”
= p, C"r-\ =g¢. B"A = 7, and the angles opposite them /7(x),
[l(a"), }=, and where consequently (Theorem 34):

b =rsin [I(u), ¢ =r cos Mu).
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Now break the connection of the three principal-planes along
the line BB', and turn them out from each other so that they
with all the lines lying in them come to lie in one plane, where
consequently the arcs g, ¢,  will unite to a single arc of a
boundary-line, which goes through the point A and has AA
for axis, in such a manner that (Fig. 30.) on the one side will
B

Fic. 3o0.

lie, the arcs ¢ and p, the side 6 of the triangle, which is perpen-
dicular to AA' at A, the axis CC’ going from the end of 4 par-
allel to AA’ and through C” the union-point of p and g¢, the
side a perpendicular to CC' at the point C, and from the end-
point of a the axis BB’ parallel to AA" which goes through the
end-point B” of the arc p.

On the other side of AA’ will lie, the side ¢ perpendicular to
AA' at the point A, and the axis BB’ parallel to AA’, and go-
ing through the end-point B” of the arc 7 remote from the end-
point of &.

The size of the line CC” depends upon &, which dependence
we will express by CC" = f(4).

In like manner we will have BB” = 7(b).

If we describe, taking CC’ as axis, a new boundary line from
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the point C to its intersection D with the axis BB’ and desig-
nate the arc CD by 7 then is BD = f(a).
BB"=BD-+DB"= BD+CC", consequently
F(e)=fa) + f(b).
Moreover, we perceive, that (Theorem 32)
t:pef(b): rosin /() ef(é)'

If the perpendicular to the plane of the triangle ABC (Fig.
28.) were erected at B instead of at the point A, then would
the lines ¢ and 7 remain the same, the arcs ¢ and 7 would
change to # and ¢, the straight lines @ and 4 into 4 and @, and
the angle /1(a) into /1(%), consequently we would have

g =rsin [1(3) ef((z),

whence follows by substituting the value of ¢,

cos ()= sin /() o/ (@),
and if we change « and 3 into & and ¢,

sin /1(8)=sin //(¢) e (@)
further,.by multiplication with ef(b)
sin /1( ) e/ (0 — sin //(¢) e/ ()

Hence follows also

sin /7 (a) e () = sin 1133) &/ (2)-
Since now, however, the straight lines 2 and 4 are independ-
ent of one another, and moreover, for =0, f{6)=o, //(5)=1x,
so we have for every straight line a
e—f(a)-—fsinﬂ(a).
Therefore,
sin f/(¢c)==sin l](a) sin 11(5),
sin [1(&)= cos I1(x) sin 11(a).
Hence we obtain besides by mutation of the letters
sin /l(a)= cos 11(3) sin [1(]),
cos I1(b)= cos 11(¢) cos 11(u),
cos /(@)= cos 11(c) cos I{3).
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If we designate in the right-aﬁgled spherical triangle (Fig.
29) the sides 1l(c), 11(3), I1(2), with the opposite angles
//(b),' II(«), by the letters @, 4, ¢, A, B, then the obtained
f?quatlons take on the form of those which we know as proved
in spherical trigonometry for the right-angled triangle, namely,

sin ¢ == sin ¢ sin A,

sin & = sin ¢ sin B,

cos A = cos & sin B,

cos B = cos b, sin A,

COS ¢ == COS$ @, €oS b;
from which equations we can pass over to those for all spher-
_ical triangles in general.

Hence spherical trigonometry is not dependent upon whether
in a rectilineal triangle the sum of the three angles is equal to
two right angles or not. r

36, We will now consider anew the right-angled rectilineal
triangle ABC (Fig. 31), in which the sides are a, 0, ¢, and the
opposite angles /1(x), 11(;7), iz

4

Prolong the hypothenuse ¢
through the point B, and make
BD=73 ; at the point D erect upon
BD the perpendicular DD’, which
consequently will be parallel to
BB, the prolongation of the side @
beyond the point B. Parallel to
DD’ from the point A draw AA,
which is at the same time also
parallel to CB', (Theorem 23),

therefore is the angle
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A'AD = [I(c+73),

A'AC = 11(4), consequently

6y = NN(a)y+(c+3).

8 If from B we lay off 7 on the hypoth-

D TP enuse ¢, then at the end point D,

(Fig. 32), within the triangle erect

¢ upon AB the perpendicular DD’, and
from the point A parallel to DD’ draw
AA', so will BC with its prolongation
CC' be the third parallel; then is,
angle CAA'=/1(4), DAA'=1l(c—3),
consequently //(c—73)==1I(u)—+11(5).

,l¢ The last equation is then also still

b

A valid, when ¢=73, or ¢< 3.
Fie. 32.

If c=;3 (Fig. 33, then t}le perpendicular AA’ erected upon

o)
A ()

A.

N b
Fie. 33.

AB at the point A is parallel to the side BC=a, with its
prolongation, CC', consequently we have H(a)—i—ﬂ(ﬁ)“%.,
whilst also //(c—3)=14z, (Theorem 23).

If e< 3, then the end of 7 falls beyond the point A at D
(Fig. 34) upon the prolongation of the hypothenuse AB.
Here the perpendicular DD’ erected upon AD, and the line
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AA’ parallel to it from A, will likewise be parallel to the side

? BC=u, with its prolongation CC'.
Here we have the angle DAA’

=/[I(3~-c), consequently

c e (a)+ (==~ II(7—c)=H{c—3),

(Theorem 23).

The combination of the two equa-
_tions found gives,

o 2ll(6)y=M(c—3)+ TT(c+3),
2/7('1/.)::/7(c~ﬂ')*—f/(c%—ﬂ),

whence follows

cos/I(b) cos[ylTic— 3+ (c+3)]

cos ()~ cos[ 5 (e — ) — 5 M(e+73)]

Substituting here the value,
(Theorem 33)

cos/l(4)
’ cos/l(x)
. Fic. 34. we have

- [tany/(c)]*=tan /I (c—3)tany 1 (c= 7).

Since here fis an arbitrary number, as the angle //(*) at the
one side of ¢ may be chosen at will between the limits o and
47, consequently 7 between the limits o and «,so we may
deduce by taking consecutively 3 - ¢, 2¢, 3¢, &c., that for every

ey

=cos/l(c),

positive number #; [tan}/T(c) ] *=tani/l(nc).

If we consider # as the ratio of two lines x and ¢, and as-
sume that cott//(c)=e¢,
then we find for every line z in general, whether it be positive
or negative, tand [7(x)=€
where € may be any arbitrary number, which is greater than
unity, since I(x)=0 for x=cx.

Since the unit by which the lines are measured is arbitrary,
so we may by € also understand the base of the Napierian
Logarithms.

37. Of the equations found above in Theorem 35 it is suf-
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ficient to know the two following,
sinfl(c)=sin/l(a) sinll (),
sin/l(a)=sinl/(4) cos!/(),
applying the latter to both the sides @ and 4 about the right
angle, in order from the combination to deduce the remaining
two of Theorem 35, without ambiguity of the algebraic sign,
since here all angles are acute:
In a similar manner we attain the two equations
(1.) tan/l(c)=sin/l(4) tan/l{a),
(2.) cosll(a)=cos!l(c)cosll(3).
We will now consider a rectilineal triangle whose sides are
a, b, ¢, (Fig. 35) and the opposite angles A, B, C.
R If A and B are acute angles, then
the perpendicular p from the vertex
of the angle C falls within the triangle
L————B and cuts the side ¢ into two parts, .v
Fic. 35. on the side of the angle A and c—x
on the side of the angle B. Thus arises two right-angled tri-
angles, for which we obtain, by application of equation (1),
“tan//(a)=sinB tan/l(p),
tan//(4)=sinA tan/l(p),
which equations remain unchanged also when one of the
angles, e. g. B, is a right angle (Fig. 36) or an obtuse angle

(Fig 37)-

X

¢ c
) t 3
A o B A © B =
FiG. 36. FiG. 37.
Therefore we have universally for every triangle
(3). sinA tan/I(a)=sinB tan//(5).

For a triangle with acute angles A, B, (Fig. 35) we have
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also (Equation 2),

cos/l(x)=cosA cos/l(4),

cos//(c - x)=cosB cos/lia),
which equations also relate to triangles, in which one of the
angles A or B is a right angle or an obtuse angle.

As example, for B=47 (Fig. 36) we must take x=c, the
first equation then goes over into that which we have found
above as Equation 2, the other, however, is self-sufficing.

For B > 4= (Fig. 37) the first equation remains unchanged,
instead of the second, however, we must write correspondingly

cos/!(x —c)=cos(=—B)cos/l(a);
but we have cos/l(z—~c)=—cosll(c—x)
(Theorem 23), and also cos(m—B)=—cosB.

If A is a right or obtuse angle, then must c—x and x be put
for x and ¢—ux, in order to carry back this case upon the pre-
ceding. ‘

In order to eliminate x from both equations, we notice that
(Theorem 36)
1-[tan}//(c—x)]?
1+ [tan}/I(c—x) ]

I*““‘\ -2¢

cosll(c—x)=

I--e¥x- 2¢O
1—[tany /] c)]*[cots Hx)]?
1+ [tand o 2 [cotd T(x)]?
Cos//(r) ~cosll(x)
» = 1—cos/l{c)cosll(x)
If we substitute here the expression for cos//(x), cos/lic—x),
we obtain

cos/l(a)cosB--cos/l(§)cosA
COSH(C)_ ~+cos/T(a)cos/T(b)cosAcosB

whence follows

cosll(a) cosB= cos/l(c)—cosA cosll(4)

i—cosA cos/T(b)cosll(¢)
and finally
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(sinf7(¢)J*=[1—cosBcos//(c)cosl/(a)][1— cosAcos/l(b)cos /(c)]
In the same way we must also have

(4-) ,
[sin/l(a)J*=[ 1—cosCcos /I(a)cos /(b)][1—cosBcos /I c)cos [I(a)]

[sin/I(b)]*=[1—cos Acos/I(8)cos /lic)] [1—COSCCOS [l(a)cos /I(b)]
From these three equations we find

2 /i 2 i ,

Lsin/(6) Psin/I(c) ] -=[1—cosAcos/T(&)coslI(c) ]

[sinfl(a)]?
Hence follows without ambiguity of sign,
| sin/l()sinl1(c)
(5.) cosAcos//(b)cos(c)+- “emli(ay =T

If we substitute here the value of sin (e) correspundmg to
equation (3.)

sml](:)—— Cta.nl](a)cos//(c)

then we obtain
' e cos/l(a)sinC
cos/i{e)= sinAsin//($)-+ cosAsinCcos /1{a)cosT1(5);

but by substituting this expression for cos/l(¢) in equation (4),

7
(6.) cotA sinC sinfl(b)+cos _C%Zﬁ%f_z%

By elimination of sin//(4) with help of the equation (3) comes

a A
E(—)s“(a)cosC::r — C—(E--sinC sin/l(a).
cosll(&) nB

In the meantime the equation (6) glves by changing the letters,

cos/fT
coZﬂx;; =cotB sinC sin//(a) + cosC.
From the last two equations follows,
' , inB sinC
(7). cosA + cosB cosC:Elr.l—irl
sinf/(a)

All four equations for the interdependence of the sides a, b,
¢, and the opposite angles A, B, C, in the rectilincal triangle
will therefore be, [Equatlons (3). (5), (6), (7),]
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(sinA tan//(a)=sinBtan//(4),
. sinll(4)sinll(c)
cosA cosll(b)cosll(e)+ W“s'infl(a‘) =1,

(8.) < o cos/l(2)
cotA sinC-sinfl(b) +cosC= cosll{a)’

sinB sinC.
sinfla)

|_cosA—+cosB cosC=

If the sides a, 4, ¢ of the triangle are very small, we may
content ourselves with the approximate determinations (Theo-
rem 36)

cotfl(a)=a,
sin/l(a)=1—14a
cosfl(a)=a,

and in like manner also for the other sides & and ¢.
The equations 8 pass over for such triangles into the fol-
lowing,
b sinA=a sinB,
a?==5 2 — 2b¢ cosA,
a sin(A+C)=b sinA,
cosA + cos(B+ C)=o0.
Of these equations the first two are assumed in the ordinary
- geometry ; the last two lead, with help of the first, to the con-
clusion A+B~+C=x.

Therefore the imaginary geometry passes over into the ordi-
nary, when we suppose that the sides of a rectilineal triangle
are very small.

I have, in the scientific bulletins of the University of Kasan,
published certain researches in regard to the measurement of
curved lines, of plane figures, of the surfacesand the volumes of
solids, as well as in relation to the application of imaginary
geometry to analysis.

The equations (8.) attain for themselves already a sufficient

* foundation for considering the assumption of imaginary geom-
etry as possible. Hence there is no means, other than astro-



164 LOBATSCHEWSKY. THEORY OF PARALLELS.

nomical observations, to use for judging of the exactitude
which pertains to the calculations of the ordinary geometry.

This exactitude is very far-reaching, as I have shown in one
of my investigations, so that, for example, in triangles whose
sides are attainable for our measurement, the sum of the three
angles is not indeed different from two right angles by the
hundredth part of a second.

In addition, it is worthy of notice, that the four equations
(8.) of plane geometry pass over into the equations for spher-
ical triangles, if we put @17 1,0} —1, ¢} —1 instead of the
sides &, &, ¢ ; with this change however, we must also put

cos(a) ,
cos/l(a)=(y  —1)tana,
tanll(a)zs-—————-—ma o =1,
and similarly also for the sides 4 and .
In this manner we pass over from equations (8) to the fol-

lowing,

sinA siné=-sinB sing,

cosa==cost cosc+sind sinc cosA,

cotA s51nC—+cosC cosb=siné cota,

cosA==cosa sinB sinC—cosB cosC.
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AN ELEMENTARY DEMONSTRATION OF THE EX-
PANSION OF THE SINE AND COSINE IN
TERMS OF THE CIRCULAR MEASURE.

By Pror. W. H. EcroLs, RorLra, Mo.

The rigorous deduction of these series and the proof of the
possibility of the expansion seems only possible through aid of
the calculus or the complex quantity in the shape of De
Moivre's Theorem. Their great importance to the engineer
and elementary student has, nevertheless, caused more elemen-
tary demonstrations to be desired. An example of such is
seen in Prof. Newcomb's Trigonometry, 1889. Of this class
the following seems quite simple and direct. The method of
deriving the coefficients, suggested by Mr. Schaeberle’s Dem-
onstration of the Logarithmic Series in Annals of Mathematics,
is not very different from that employed by Dr. W. B. Smith
in his Clue to Trigonometry, just out of press

I.
Assume this expansion

(1.) sinx+-cosxy - =@y+a X+ asx* +. . ..+ Apip .

(2.) ..—sinx+ cosr=ay—ax+ asx—. .. — Pagr® .
Adding and subtracting

(3.) siny=ax+a®+. .. Fag P+

(4.) cosx=ap+asx®+ . . . .4 don_sx?P i+,

x=0in (1) or (4) gives ay=1. Divide (3) by x, then x=o0
gives a;=1I.
Square (1) and save only the terms in x°% because of (3).
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(5-) ..sinza=2a+2(as+ @2)x3 4 2(as+ ay+ asag)x®+. . .
(1) % (2) gives
(6.) cos2x=I++(2a,— 1)+ 2a4—2a3+ as? ) xs+. .
Put 2x for « in (1) and equate to the sum of (3)
and (6).
Thus

sinzx + cos2x=! 1
Tt 2x
+(2ay—1)x?
'+ 2(az+ay)at
+(2a4— 203+ @)t

Identifying coefficients of like powers of x we have

, 1 1 I I
QWL =T = ag= - e +4—}, ‘as= +, ’etc.
a8 AP q2n—1 n\1'=2n—1 )
. siny=x-— — .- e Yaoa
' T 5| + 231 mzéua.m—l_m T.

"2 4 2n—2 Mm=%p-—-2

X X X
CoSA=I——r+ ... 4 oy 2(—)"amau_ s m+ ..

2! 4! 2 m=o

II.

In forming the series of products Yaya, involved in the co-
efficients above we observe the law of their signs to be such
that when p and ¢ are each odd the product is negative, and
otherwise positive.

Assuming the law of the coefficients as found above to hold
good to the zth term inclusive in each series; we notice,

1° The law for the signs of the coefficients
&y, —ay, tas, —ar, ... (—)*lay
Tay, —ay tay, —as ... (=) e o,

when applied to the expressions
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Qa1 @i@on ot .« . T @18t Aoan-1,
Qo 2T M@y . . . T a1 3T @l
is such that the sign of each is (—)»*!, and this is therefore
the sign of the #th term in each series,
2° In finding the numerical value of the coefficient of the
ath term in either series we need only consider the expression

m=n m
v 1 I

-— e . = I._i_ _ m —
m=o 77— m![ Tyl =

Therefore the coefficient @, in either series is determined by

2" at
apx'== o
I
=
The #th terms of the series are
o An—l ) i l.x""“‘*«
— Pt apd(— B e
(= 12n—1)! (= (271—2)’
111

We are to prove that the law of the coefficients assumed to
the #th term inclusive 1s also true for the (2~ 1)th term.

In the series for the sine we have for the coefficient of the
(n+1)th term

I me=2n-1

e N
Qop. 17~ 351~ @wmf2n. 1.y
2 ma=l

or

2 1 ne=2n..1 1
2n-+1 — | { ‘_\n-1 N
a =2a —_ — =
2 2. 1=20 () (2n+1 )!( ) (2n+ 1) _gn\(2n+ 1—ni)!
2=l g
(2211»1-_2)[12!‘"’_1.____.( ___)u~1 (’,”; I_.\'

. 9y == (— )01 1
- @n1==(—) (2n+1)!

In like manner, in the cosine series,
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m=2n_—1
zina2n=2a2n(___)n+l_\.' amn-—m ,
m=1
J— n n+1 \ I
_2{1213(—“) (Zn)l( ”|(27l_m)|

_ I
aZ“Z(—)ll+](27z)!

The law of the series being proved to the third term, it is
true for the fourth and all succeeding terms; since it sat-
isfies the test of convergency the first assumption was jus-
tifiable.

Thus, if the series be possible, we have

a2n+l
1 A At — Yo+l
siny=x—. ..(—) (ant 1)
xin—2
cosx=I1—.. . (— )" ot

(zn—2)!
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THE TWO-TERM PRISMOIDAL FORMULA.

By Dr. GeorGe Bruck HaLsTep, UNIVERSITY OF TEXAS.

I

Prof. Echols begins an interesting article on the Volume of
the Prismoid as follows: “In estimating the volume of earth-
work in the construction of lines of communication, a partic-
ular solid has occurred so frequently that engineers have given
it a specific name ; the Prismoid. Whether the word was used
to designate a definite geometrical solid prior to its adoption
by engineers for that purpose, I have been unable to discover.
The solid has been an extremely interesting one to engineers,
and much has been written by them upon the subject of its
volume.” Is it not surprising, then, that they have not found
out what the world has possessed for more than a decade—a
Two-Term Prismoidal Formula?

The word Prismoid is a good, old, mathematical term, and
has always had and kept, and [ hope may always keep, the
meaning recognized, for example, by Charles Hutton in his
Mathematical Dictionary, the new edition of which was pub-
lished in London in 1815. There, under the word, you read
as follows: * Prismoid . .. Its ends are any dissimilar parallel
plane figures of the same number of sides; the upright sides
being trapezoids. If the ends of the prismoid be bounded by
dissimilar curves, it is sometimes called a cylindroid.” This
meaning the word maintained down to my own college days at
Princeton, where I remember it in the text-books of Loomis,
and still maintains, see for example the word Mensuration, in
the latest edition of the Encyclopadia Britannica.
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But the formula called by the name of this solid, and hence-
forth to be called the old or three-term Prismoidal formula,
went far beyond the prismoid in its exact applicability.

Newton (Methodus Differentialis, published 1711; further
carried out by Cotes, on Newton’s Meth. Dif. in the works col-
lected posthumously, 1722) showed how an area or volume
could be evaluated approximately from parallel cross-sections,
and especially that from threec cross-sections, following at the
same distance apart, we get approximately the enclosed seg-
ment if we add the outer sections to four times the mid section
and multiply the sum by a sixth of the distance between the

outer sections.
Maclaurin (1742, Fluxions, No. 848) referring both to

Newton and Cotes, made additions which indicate that this
special rule of Newton’s, the Old Prismoidal Formula, gives
the content exactly when every section parallel to the base is a
function of its distance from it of a degree not higher than the
third, o (X)) =ny+ 1215 + 1P+ gt

After a century of applications to areas and volumes, in 1842
Steiner conquered it by elementary geometry and indicated its
applicability to warped or ruled surfaces.

But, in seeming ignorance of all this, American engineers
began and continue to give their time to doing over again
what had been already done.

In his Field-Book, Edition 1854, Henck says. “A prismoid
is a solid having two parallel faces, and composed of prisms,
wedges and pyramids, whose common altitude is the perpen-
dicular distance between the parallel faces.” This is ambigu-
ous and stupid. It defines nothing. The old prismoid may
be cut up into prisms, wedges, and pyramids, but this is not at
all its essence, and, to me, does not even definitely suggest the
more general solid for which in 1881 I introduced to English
readers the word Prismatoid, now adopted by the Encyclopzdia
Britannica, which solid is defined by Prof. Echols as “having
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two parallel plane polygons for bases, and whose side surface
is made up of plane faces (triangles or quadrilaterals) formed
by joining corresponding corners of the bases. Using cor-
responding corners to denote any two corners, one of each
base, such that the straight line joining them is an ¢dge of the”

 prismatoid.
I think this definition by, Prof. Echols is faulty, because it

directs you to join corresponding corners, when in‘reality there
are no.corresponding corners, as his second sentence discloses
in telling you that corresponding corners denote such as you
have made corresponding corners by joining corresponding
corners.

I venture to suggest as better my own definition given more
than ten years ago, and appearing in four successive editions
of my Mensuration (Ginn & Co.) and four successive editions
of my Geometry (Wiley & Sons), as follows:

A Prismatoid is a polvhedron whose bases are any two poly-
gons in parallel planes, and whose lateral faces are triangles
determined by so joining the vertices of these bases that eack lat-
eral edge, with the preceding, forms a triangle with one side of
either base.

Yet the mis-named prismoidal formula corresponded in
range neither with the prismoid, nor the prismatoid, nor their
limiting form, the cylindroid. Maclaurin had indicated exactly
its applicability. Yet, in 1857, fifteen years after Steiner, Gil-
lespie reaped honor from merely showing that the formula is
applicable to the space covered by the hyperbolic-paraboloid.

In 1858 Chauncey Wright in the Mathematical Monthly
(Cambridge, Mass.,) in a special investigation devoted to the
subject, obtained by the Differential Calculus (which was not
at all necessary) the cubic equation of applicability, but missed
Weddle's beautiful rule.

Prof. E. W. Hyde, in 1876, inan article entitled Limits of the
Prismoidal Formula, did not even get as far as his predecessors.
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In an extended.memoir on the Prismoidal Formula, in Van
Nostrand's Magazine 1879, J. W. Davis, again by the differen
tial calculus, reaches the cubic criterion.

At that date my own Mensuration was already written, and
I was teaching it regularly to my classes. In it the applica-
bility of the old or three-term prismoidal formula was exhaust-
ively treated' and without the calculus. For readers of the
calculus the following may be given as a paraphrase of the
method quoted by Prof. Echols from Todhunter Int. Cal, p.
173, of showing that this formula applies exactly to all solids
whose cross-sections are cubic functions of the section-height.

If Ax=w(x)=ny+mr+mx?+ 5%
then w(o0)+4o0(ka)+w(a)=n,
+qny + 2am+atny + fadng
+ gt am+ duyt dPag
=6ny+ 3am-+ 2atny+ ﬁasm
Thus D={a[Bi+4M+By]=¢a[w(0) + 4w(4a) + w(a)]
= §0[6m+ 3an + 2a%ny+ $aPny\=any+1atm + aPny + Latn,,

But by the calculus this 1s the exact volume of the solid,
since it is = (at')(.x;).

Jdo .

This investigation is faulty and does not fix the criterion of
applicability, since it says nothing to show that the conditions
are satisfied only by functions which have no fourth or higher
powers. This is proved in my Menstration without the cal-
culus. For readers of the calculus the following method may
be of interest.

Measuring x ona line normal to which the sections are made,
let Ax=wm(x) be the area of the section at the distance x from
the origin. Let three sections be made through any solid at
the distance (x—/%), the distance x, and the distance (x+ /)
from the origin. Then w(x—£%), w(x), w(x+4%) will be the
areas of these séctions, and the old Prismoidal Formula, for
the volume between the bases w(x—/%) and w(x+4) gives
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shlo(x—h)+ qo(x)+o(x+1)].
But the volume is the integral of the differential solid wix)dx
between the limits x— % and x-+ 4.

rx“l(f)(a')d.l‘: [.w(x—F/l)d—“’ —_ ra) (wv—rh)dx.
</ x—h ‘ :

If the function w fulfills the conditions of the Prismoidal
Formula, we have, by equating the two expressions for the
volume,

.fw(x—f*/z)dx — f o(x—h)dx=%w(x—h)+ 40(x) + o(x+ )]

To find what form of w will satisfy the equation, develop
both its members by Taylor’'s Theorem.
The first member becomes (A)
72 3
([m( )+ o' (x)ht+o'(x) +(:J"'(.\')—zz‘—+etc.]d.v
2 2x3
— r [w(x)—a'(x)+w"(x) - —-m"'(’.v){zi +etc.Jdy
R 2 2.3
-~ ;ld
= ' [20'(¥)hdx 20 (x) -~ dx + etc.)
. 2.377
3 5

/ .
=2w(x)h-+ " (x) ; ; (u"”(.x“):/; g +etc.
3.4.

The second member becomes (B)

)

Y/
Fhlw(x)—w' (2 0" (2 )5 —ete.-qulx) - X))o (VP ete.]
Y
/l[éw( —|—u ”(,‘L’)/ZLI' tts "”( 1) + +etc.

=2w ( .\‘) h+w” ( x) — (U""(.’\”)g‘é -+ etc.

Comparing the last members of (—\) and (B), we find the

equation,
5

Vs
20 (x)+ o x); + w""(.r)éé%f etc.=
]

re kg "'7 k
=2a(x)+ o (x)g— + H)qﬁd etc.
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Therefore the old Prismoidal Formula applies exactly to a//
solids contained between two parallel planes, of which the area
of any section parallel to these planes can be expressed by a
rational integral algebraic function, of a degree not higher than
the third, of its distance from either of these bounding planes
or bases. And in general it applies universally to no other
solids.

Thus the cubic Ax=amg+ nix + e+ gyt
expresses the law of variation in magnitude of the plane gen-
eratrix of prismoidal spaces. ”

But our prismatoid needs only a quadratic. This is readily
proved. Any prismatoid may be divided into tetrahedra, all
of the same altitude as the prismatoid; some having their apex
i the upper base of the prismatoid, and for base a portion of
its lower base; some having base in the upper, and apex in the
lower base of the prismatoid; and others having for a pair of
opposite edges a sect in the plane of each base of the prisma-
toid. A section Ay of a tetrahedron in the first position equals

(tZ - .\‘)2B1.
a
A*B, .

For the second position ;—\_\.z-;lz

For the third position Ay=x(axr—x?),
(see Halsted’s Geometry, page 230.

Thus in any prismatoid any cross-section is only a quadratic
function of its distance from either base. Therefore in em-
ploying for its volume the old three-term formula, we have
been using a bear-trap to catch a mouse.

For all solids whose- section is a function of degree not
higher than the second, or

A= (x)=ny+ mzx+ n1?,

a
the volume is r w(xX)=ma+ yma® + Y nad.
. o
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Measuring « from one base B;, we have
AO=B1———"‘7l0.

Then A,=By=B+ma + ma’.

We see at once that any cross-section whatever, if known in
addition to the altitude and bases, will give us the volume.

Suppose we know the section at 1/z the height of the solid
above By, then we have for determining 7z and 7y the two
equations

2

A;;_zz B+ mZ-hzzz gj

By=B,+ma+ ma®.
#*A, —(5*—1)Bi— By,
Hence n= : e

<. ( Z-__I)t.z__,.
2Byt 2(2—1)B—2* A -
mECT (=12t

Thus for the volume of the solid we have
a .
V:W:I)[('ZZ"S)B‘_)_(Z—”I)(2_3)B1+ ZzAg

Stretching two hands at us from this, we see a two-term
prismoidal formula.
For #=3, this gives

V=1a(Bs+3Az).
. 3
Again, for 25=3.
V=}a(B1+34, ).
3

Hence, to find the volume of a prismatoid, or of any solid
whose section gives a quadratic:

Multiply one-fourth its altitude by the sum of one base and
thsee times a cross-section at two-thirds the altitude from that

base. 7
D=}a(B+3T).
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I1
The rule to find the volume of a prismoid, a prismatoid, or
any solid whose section is expressable as a quadratic .
Multiply one-fourth its altitude by the sum of one base and
thiee times a cross- sea‘zon at two-thirds the allitude from that

base.
Proved w1thout the calculus in my Mensuration, Where the

formula is written
=ta(Byt 3Aa).
and also . 3
V=1a(B+ 38,

Proved synthetically in my Geometry, where the formula is
written

-)-x

=3a(B+3T),
is in my estimation incomparably simpler than every other;
but if we are willing to make and use an auxiliary solid, we
may by its help express otherwise in two terms our prismoidal
volume.

The already-mentioned article by Prof. Echols gives prom-
inence to a three term formula using such an auxiliary, “which
the writer first heard enunciated by Prof. W. M. Thornton, of
the University of Virginia about ten years ago, but which he
has never seen in print.”

It was published about a decade ago in my Mensuratlon in
the following form : Twice the volume of the segment of a
ruled surface between parallel planes is equivalent to the sum
of the cylinders on its bases, diminished by the cone whose
vertex is in one of the parallel planes, and whose elements are
respectively parallel to the lines of the ruled surface.

This theorem is nearly a hundred years old, as also the name
“associate cone” for the cone it defines and uses, and the des-
ignation “cylindroid” for such a segment. This with analogous
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cubatures was given in 1806 by Meier Hirsh, well known by
his table of integrals. It was geometrically obtained and so
interpreted by Koppe in 1838 (Crelle's Journal, 18 p. 275).
It afterwards appeared in his “Neuer Lehrsatz der Stereo-
metrie,” Essen, 1843. (Compare Grunerts Archiv, g p. 82).
We may build a demonstration of it synthetically on the sim-
pler proposition given by Tinseau in 1780 and re-stated in the
Mensuration as follows: A

NS~ solid is bounded by the tri-
N . S angles ABC, CBD, the par-
1~ \\\ allelogram ACDE, and the
' ’ Tskew quadrilateral BAED,
! whose elements are parallel
| to the plane BCD. Findits
! volume. Answer 3a. ABC.
Q- ; For on completing the prism

! with the parallel edges CD,

A P BAE, BF, the elements of the

Fic. 38. skew quadrilateral appear as
diagonals of parallelograms, as PQRS, in which the prism is
cut by planes parallel to BCDF ; hence the hyperbolic parabo-
loid halves the prism of height @ and base ABC. Similarly we

see that a tetrahedron is bisected by the hyperbolic paraboloid
whose directrices are two opposite edges, and whose plane
directer is parallel to another pair of opposite edges, a theorem
first given by Mobius on page 238 of his celebrated “Barycen-
trische Calcul,” Leipzig, 1827, in the following form: “Con-
struct on the surface of a hyperbolic paraboloid a rectilineal
quadrilateral, then will the pyramid whose summits are the
vertices of the quadrilateral be halved by the surface.” The
next step may be thus individualized : A solid is bounded by
a parallelogram, two skew quadrilaterals, and two parallel tri-
angles; find its volume. Answer, Ya( N1+ D). Let ABC,
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DEF be the triangles, ACDE the T, CBFD, BAEF the skew

quadrilaterals. Complete the prism

whose parallel edges are CD, AE,

GF, altitude @, then from what pre-

cedes, the required volume is

3a.ABG+3a.BCG+5eCAG+3aDEF
=3%a. (DN1+ D).

This empowers us to deal with a
solid bounded by two parallel tri-
angles and three skew quadrilat-
erals, and introduces the formula

Fic. 39. V=a.[$(B"+B)—B].

But every cylindroid or prismatoid is made up of finite or
indefinitely small solids like this. *This then is the rational
formula for computing the volume of any cylindroid or” prisma-
toid, (Prof. Echols). Buta great simplification of this into a
real two-term prismoidal formula has long been known.

Prof. Echols gets by the calculus, the mid section

M=4(B"+B")—iB.,
a result obtained geometrically by Steiner in 1842.
Substitute this and
V=a(M+-"5B.),
the first two-term prismoidal formula, having been given by
Koppe in his work already cited.

That a cvlindroid or prismatoid equals the cylinder or prism
on its mid-section plus one-fourth the associate cone or pyramid,
should certainly be known to every engineer, for, as Prof.
Echols suggests in our 'correspondehce since his article, per-
haps this two-term formula may involve less numerical work
than even its more elegant younger sister

D=}a(B+3T).
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COPY MULTIPLICATION TABLE,
By Mr. Levi W. MeecH, NorwicH, CoNN.

IrLusTrRATIONs—The nature and use of this Copy Table
may be first shown by comparing its results with the process
by common arithmetic. Thus in Example 1, the two tabular
results copied at locations OT and YA, when read obliquely
upward give 21, 07, 28, 35, 63, 14, which are the common
product of each figure of the multiplicand by the multiplier 7,
and their sum 2,202,144 is the total product.

Again in Example 2, the line copied from location TA gives
the unit figures only of the common product by 7 precisely as
before. The next line copied from 8T gives the sum of tens
in the product by 7 added to the units of the common product
by 8, that is 202361 added to 482026; this sum is 684387 as
given by the Copy Table. And the next line copied from 0Z
gives the tens figures only of the common product by 8. The
total sum 27369504 is evidently the true product sought.

So in Example 3, the figures copied from locations VA and
8T are identically the same as before. The next line copied
from 4Z is the similar sum of tens in the product by 8 added
to units in the common product by 4, that is 203471 added to
246068, of which the tabular sum is 4494(1)39. It is import-
ant here, and in other similar instances, to note in illustration
only, that when the sum of two such digits is 10 or more, as
here 7-+6 is (1)3, by the peculiar construction of the Copy
Table, the (1) is carried to the next line below, and so included.
Thus this (1) is here included by the tabular routine, in the
last line for ON, giving 101240, instead of 101230, the simple



i (A B C|DE | F |G| H|T]
M [012345/6789/6780/6789/6789| 6789 012356 478934789}4789i4789’
% 0000000 0000/000TICOTIOTTI|ITITIA L 0/0000ITIOIIIOII2 112212224
2 1o12343 6789 A g 1012367|48904891 B
2, f 6780/67906890|7890 B ¢ , 58015901/C
= 2024680/2468/2469|2479(2579(3579 F = 200246138579 F
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?:910987631 4321 4°°°433°44 5432/ ¢ 707416380/4\807390859185U
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Z 101234657895/89578915789\5789 = = Q“" =t
£ Q000112 1223/1233|2233 2333/ °334‘A = — :
g 1017458 690%691’) 7912, c - 01234657895789578957895789
’ . jo12;7013D 0'001123 23442345 2445(3445/3435 A
‘)024794168111691 2691! ’77911079’)6‘. 013469702370o4_71048124813+D
03603063606370 7370 7470) 7471 ~oo~7oso7o 2703 2803/38033813 H
4 048376 1049‘ 10;9 2059, 2159t M 30«7041 7481 74837562 8582 839’1J
, :\ 150‘3 049387216021612261/3261 3271 N
953346 57389 5/89 5759 5750, s7b9 | 1012346(57895789/5789/57895789
5 050612 6728 6738 7738| 7838\78390 5‘031604 7849 0o
6 062958 1407 1417 24172517|2518/§ » 7840/940‘894089501’
7074204 6186 6196 ,196’"796v"'>9, U 60639690598250906293699 36508
8 086530 18651875 2875 0976 2976y 1075905 7207 7oob 730883088318V
9 098876 ¢544 6354 75547654 7635/ B 808754729862987 | Y
T UV | W ) | | 2087’3087*097?,
012336 4780 780 4789 789 | 90908877 96576667866 87608775 B
00012342456 2556 3566 3567 A X Y |z A B
10135506135 6235 7245 1246 B 012345 67896789678967896789
2025536 0814 0914 1924 1925 Ml & 00012344567 5567 5667 367756784
3037182 4593 4693 J f—:g 101*5790946194611346&3561 7B
5603 5604 K :5_'5- ~07581469957995 H
4049438 82728372 9381 9381 N 3 7023 7035170"61
012356 4789 478047894789,  © 3037159”604360437043714) 37is K
5051784 2051 P i 4040494,838393830483 04930404 N
l 2051 3061 3062/Q o 012345678967896789 67896789
6 063030 663067307740 7741|T & 5051739406250625162517235173Q
‘”07§ 860319 0419 1429 vV s 6063074074111741 18411851 18352T
1420W = 707581964207420752075307531 W
30575%" 4098 4198 Z = 80876340109"109132093219 A
5108 SIOQA é a ‘3210B
9 099988 8777 88779887 9888 B' o 9099999588889888‘99889998 9999 B’
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tens in the product by 4. The sum of the regular tabular
elements gives the true product 153206304.

Example 1. Example 2.
31459287
314592x%7 178534 1A
178534 TA 684387 8T
202361 OT 203471 OZ
2202144 loc. 27369504 loc.
Example 3. Example 4.
31450243487
314592x°487 178534 TA
178534 TA 684387 8T
684387 8T 449439 47
448439 47 033716 3N
101240 ON 101130 0oJ
153206304 loc. 10906982304 loc.

Use oF THE TABLE: Prefix a cypher to the multiplier,
which will then indicate the number of locations of the left
pointer. At each location we copy as many figures in the
product as there are digits in the Multiplicand : and their sum
gives the true product, Thus in Example 2, the right-hand
figure of the Multiplier being 7, we locate (First entry) the left
pointer at 7A, or the junction of 7 at the side with A at the
top of the upper left portion of the Table. Looking up to the
nearest heavy line above, we find just under it, 3 1 the two left
digits of the Multiplicand, and_ directly under those are 1 and
7 to be copied in the product with the right hand, while the
left pointer stays at the location. Next, under 4 5 from the
Multiplicand are 8 5 at the pointer to be copied in the product.
Then under 9 2 from the Multiplicand are 3 4 at the pointer to
be copied in the product, which completes the six figures. Now
T being on the right of the first location, and 8 the next left
figure of the Multiplier, let the pointer be moved to #ke second
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location 8T, or 8 at the side and T above. Here just under
the next heavy line above find as before 3 1 from the Multipli-
cand under which at the pointer are 6 8 to be copied with the
right hand in the product, beginning one place further to the
left. Next 4 5 and 9 2 from the Multiplicand give successively
on the line of the pointer, 4 3 and 8 7 for the product. Lastly,
with O from the Multiplier, and Z from the right of the pointer,
move to the third location OZ4, and proceed with the Multipli-
cand, as before, and as if the left column headed 012345 were
united to column Z. And thus the simple mode of copying
shown in the wrought Examples is entirely general, however
large may be the two factors to be multiplied.

It may be proper to state that the present Copy Table is
condensed from the full Table inserted on pages 62, 63 of the
“System and Tables of Life Insurance,” or Experience of the
Thirty American Offices. Besides illustrating how ‘“‘the carry-
ing figure” of the schools can be replaced by ‘a simple routine,
this Table has opened the way for another improved Copy
Table, a volume now in preparation.
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THE TRANSIT OF MERCURY ACROSS THE SUN’S
DISK ON MAY oth, 1891.

By Mr. H. C. WiLLiams., Corumsia, Mo.

The mathematics used in computing the phases of a transit
of a minor planet across the sun’s disk is of so abstruse a char-
acter that to the ordinary mind the solution is enveloped in
deepest mystery, but a method has been devised whereby any-
one with a knowledge of the principles of elementary astron-
omy, geometry and plane trigonometry cannot fail to under-
stand how the solution of this important problem is reached.

For an illustration of this method we have taken the transit
of Mercury, which takes place on May gth, 1891. The follow-
. ing data, which were taken from the American Ephemeris, are
all that is required in the computation of its phases.

Declination of the Sun at Conjunction . . . +17 32" 1.3"
Declination of Mercury at Conjunction . . +17 18 1.6”
The right ascension of the Sun and Mercury at

Conjunction . . . 3 em 57.16°
Hourly motion of the Sun in rlght ascension . . +2 26.22"
Hourly motion of Mercury in right ascension . . —1" 18.49"
Hourly motion of the Sun in declination . . . +0 39.54"
Hourly motion of Mercury in declination . . . —1" 6.6;7"
Sun’s equatorial horizontal parallax . . . . . 8.75
Mercury’s equatorial horizontal parallax . . . 15. 84"
Sun’: semidiameter . . . . . 15" 52.3"
Mercury’s semidiameter . . 6.0"

The figure is drawn after the method of projecting lunar
eclipses used in Loomis' Practical Astronomy. From C asa
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center with a radius equal to 13 52.3", the semidiameter of
the Sun, describe a circle ANBS which represents the disk of
the Sun; through the center draw the line AB parallel to the
equator, and the line N5 perpendicular to AB; these are lines

N

F
FiG. 4o0.

of right ascension and declination. The hourly motion of the
Sun being eastward and that of Mercury being westward, the
true hourly motion of Mercury relative to the Sun would be
the sum of these motions, or 22}.71", and reducing this to
motion in an arc of a great circle by multiplying by the cosine
of the mean of the declinations of the Sun and Mcrcury we
have 21.4.514". Now from C lay off PC equal to 214.544" or
this motion i» seconds of arc, and also OC on line NS equal to
1¢6.21", the motion in declination, and PO would be the re-
sultant of the two motions in the direction of the planet’s path
across the disk of the Sun. Now at the time of conjunction
the difference of declination of the two bodies would be this
distance of the p'lth from the center of the Sun, then lay off
CG equal to 840.2"”, then draw the line EF through G parallel
to PO. This will be the path of Mercury as seen from the
center of the earth with a telescope that does not invert. Then
will u, «', 4"« be the positions of Mercury at first, second,
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third and fourth contacts. Draw lines Ca, Co, Cu”, Ca”,
and let fall a perpendicular from C to line EF. Then from the
triangles thus formed, times of contact and the positions of the
planet on the Sun with respectto the point N may be readily
calculated by the methods of geometry and plane trigonometry.
In the right-angled triangle OCP we have given CP equal to

214.544" and CO equal to 106.21", and from the proportion,

CO : R 2 CP : tan COP,
we find angle COP equal to 63° 39" 44.04" and CPO equal to
26° 20" 15.96”. Then by the “ Law of Sines” we obtain OP
equal to 239.394". In the triangles OCP and CDG angle POC
equals angle CGD, and angle OPC equals angle DCG, being
angles of similar triangles. Geometry, theorem 12. From
the proportion, '

CG : CD = R : cos DCG
we find DC equal to 752.982", and from the “ Law of Sines”
DG equals 372.764". In triangle «DC we have given Cu the
semidiameter of the Sun plus that of Mercury equal to 15’ 58.3”
and DC equal to 752.982". Then from the proportion

«C : R 2 DC : sin DaC
we find DuC equal to 51° 47" 24.09’, and by a similar propor-
tion we find Du equal to 592.751", then the line «G equals «D
plus DG, or 592.751" plus 372.764" equals 965.515", and this
divided by the howly motion PO gives 4" 1™ 59.365% which
is the time required for the planet to travel from « to G, and
this subtracted from the time of conjunction, 15 57" 22.224%,
which is found by interpolation of differences, gives 11" gsm
22.859% Greenwich time, (there is perhaps a slight error in
this owing to the imperfection of the tables) which reduced to
Central time would be §® 55™ 22.859% the time of first contact
as seen from the center of the earth. The time of second con-
tact is computed in a similar manner from the triangle «, DC,
«'C, being 15 52.3" mimnus6.0”, and found to be 6" o™ 18.059".
The times of third and fourth contacts are not calculated, not
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being visible at this place, but may be computed in the same
manner. Now to an observer in north latitude the planet would
appear to pass across the Sun’s disk lower down than to an
observer at the center of the earth owing to the parallax and
from methods of computing parallax Loomis’ Practical Ast.
Arts, 210 and 211, we find the true time of first and second
contacts for Columbia to be
3" 54" 0.0° and 5" 58" 55.29%

The next problem is to find the distances from the points of
contact to N, which are the angles «CN and «'CN, which are
the supplements of the angles uCG and «'CG. These supple-
ments uncorrected for parallax equal

115 28 40" and 116 24" 42"
The first is useful in showing where to look for first contact.

- SuppLEMENTARY Note—The above results being computed
for the latitude and longitude of Columbia, which is not very
far from the geographical center of the State, are practically
correct for all places in Missouri. The planet will not be visible
to the naked eye, but may be seen with a small telescope, and
should be looked for at ten minutes before six o’clock p. m.,
(railroad time) on the upper left hand limb of the Sun. The
observed times of the contacts will agree with the computed
times within one or two minutes, when the observations are
accurate and the correct time used. I shall be glad to receive
here at the observatory the results of any observations that
may be made of this transit, - Accurate daily time signals are
received at the telegraph offices and railway depots throughout
the State. MiLToN UPDEGRAFF.
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NOTE ON STADIA MEASURING.

By ProrF. W. H. EcHoLs, RorLLa, Mo.

Let the stadia rod be, say, ten feet long and graduated in
such a manner that one division corresponds to a distance of
one foot from the external focus of the objective, as is usually
the case. Let the graduations be numbered from the top
down, and let a permanent target be set at that reading which
represents the distance of the external focus of the objective
from the center of the instrument, and in sighting on the
telemeter always bring the top stadia wire on this target, then, if
the line of sight be horizontal, the reading R of the bottom stadia
wire is the distance in feet from the center of the instrument.

In order to obtain the horizontal distance from the rod to the
instrument when the line of sight is inclined to the horizon at
an angle f, let the projecting sight rays of the upper and lower
stadias make angles «; and #; with the line of sight of the in-
strument. Let the distances from the center of the instrument
to the top and bottom stadia projections on the rod be ¢; and
2 respectively.  Then, if the rod be held vertical, and moved
in the plane of the instrument so as- to always give the same
stadia reading R, we have from the figure,

'ulzmcos(ﬂ—{— as); "lz=m cos(f+uay),

so that theése points of the rod describe vertical circles passing
through the instrument I, and whose horizontal diameter is R
(the difference from R being altogether too small to be consid-
ered under any circumstances, being only 3R versine 24; the

cotan a being 200, and the maximum value of R, say 1000,
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makes this difference amount to only about one-fortieth of a foot).
In the figure then the readiug on the vertical rod R for in-
clined llne of sight €,
must be corrected by
NM in order to give the
true horizontal distance
H of the rod from the
instrument.
y“ " NM= %R versine 2/,

= Rsin%-

Fic. 41 "Which is the regular or-
dinary reduction formula. The value of this correction has
been otherwise determined by the writer in the following
simple manner. '

Set a pointer sight on the rod so as to make with the upper
part of the rod the angle go°+ a; (or a little more).

After the instrument man has read the vertical rod R, let
the rodman swing the rod forward and give a reading, by means
. of his pointer, on the rod normal to the sight line of the upper
stadia, call this reading 7, then we have

7
versine f =i

where L is the length of the telememeter in graduations, say
1000, (owing to the fact that the top target is set a little below
the zero of the rod, it is best to have a separate speaking scale
for 7, which is never more than a few tenths). Hence the cor-

rection is dH=Rsinf=R { P ’i} 2} :

. L (L

In all ordinary work the second term in the brace may be

neglected and the correction written
2rR R .
dH= —‘I:" zS—OC_) )
Thus a rather useful reduction field formula is



1

ECHOLS. NOTE ON STADIA MEASURING. 189

H :R"“_“!
500

or if 100 graduations correspond to one foot of rod, then
H=R—%}R/,
and the correction may be made mentally.

A good working rule is “ the correction is one foot for each
unit in » at 500" away, and in proportion for other distances.”
The precision of the correction is the same as that of the dis-
tance observation, since an error of one rod division in reading
7 gives one foot error in the correction for mean distance of
500/, and the same error in reading R gives the same error of
one foot in the distance H.

The above way of working up the stadia measures shows a
rather interesting way of making a graphical reduction table
which has the property of proportionality and at the same time
permits the taking out of both the reduced horizontal and ver-
tical distances at one reading of the pointer. The cut explains
itself. The circles correspond to R readings and to distances,
the rays to angular elevations; the V and H coordinates of any
point determined by R and # give the desired distances. Only
-angles up to 20° are really needed and the vertical scale may
be magnified at will by orthogonally projecting the circles into
ellipses. Such a table, however, is really not so useful as those
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based on the straight line graphical multiplication table, as
shown in Mr. Baker's little work on surveying and elsewhere.

After correcting for the horizontal distance as above, one
would naturally inquire for the corresponding correction for the
vertical distance. The station is L feet below the top of the
rod which is V feet above I and V is the geometric mean of
the horizontal distance and its correction. We therefore be-
come involved in the extraction of a root for finding V, which
destroys the usefulness of any formula so derived.

Prof. Johnson in an interesting paper to Engineering News
calls attention to the Porro telescope, in which, by the intro-
duction of an additional lens, the stadia reading is made pro-
portional to the distance from the center of the instrument
instead of from the external focus of the objective. It is very
doubtful that these telescopes will be constructed, for the intro-
duction of an additional lens diminishes the definition by loss of
light, etc., and the precision of the instrument is mainly de
pendent on this very property of the telescope, while the diffi-
culty(?) of adding the instrumental constant may be otherwise
obviated by targeting the rod as directed above.

This property of M. Porro’s telescope was really secondary
to that feature in it by which the rod-reading was rendered
constant for all positions in the same vertical. Thus the instru-
ment read the horizontal distance at once from a vertical rod.
This was also effected by the introduction of an additional lens,
which was so connected to the objective that the distance be-
tween their foci was made to vary (by a very simple arrange-
ment) directly as the cosine of the ‘inclination of the line of
sight. See the Report of the U. S. Commissioners, Paris
Universal Exposition, 1367. This construction M. Porro calls
stenallatic, and when combined with the additional feature of
referring distances to the center of the instrument he called the
complete instrument the arallatic telescope.

A rather interesting formula for the vertical measure V mray
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be gotten from the first figure, thus, we get easily
Mcot a;—Ncota,
tan (9=~———R—~———,
where M and N are the number of rod divisions between the
horizontal wire and the upper and lower wire respectively
(M-++N=R). 1If as is usually the case, cota;=cota;=200,
then we have for the V measure,
=H tan,
_ 27R ) M—N
N [ T L) TR
=200(M — N)—400(M—N) {—.

For low values af 8 the second term on the right is inappre-
ciable, but unfortunately for application, M—N is at the same
time so small that it cannot be measured with sufficient accur-
acy to give proper results.

For low values of 0, put circular measure for tan f, then

=7 OUHﬁ

From these two values of V we find if #=10° and H=480
then M—N is only %%, about, of a rod division.

The last formula is simple enough for an ordinary field-
working value of V, and when many reductionsare to be made
as in mapping, etc., the graphical tables are best.
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ON “A NEW ELEMENTARY DEMONSTRATION OF
THE PYTHAGOREAN PROPOSITION .

By Dr. ARTEMAS MARTIN, WAsHINGTON, D. C.

The method of proof given on page 61, No. 2, of SCIENTIE
Baccaraureus by Dr. Smith is 70 new. Ithas been published
in many places and ascribed to various authors.

The demonstration in question was given in the Sc/oo!/ Vis-
itor, Vol. 2, No. 4, April, 1881, p. 56, by William Hoover, then
Superintendent of Schools, Wapakoneta, O., now Professor of
Mathematics and Astronomy, Ohio University, as ““ adapted
Srom the French of Dalsemne.”

On page 159 of No. 5, Vol. 1, of the ]szz‘/zmzaz‘zm[ Monthly,
published February, 1859, this method of proof was given by
Rev. A. D. Wheeler, of Brunswick, Me., without any reference.

In the same journal, Vol. 2, No. 2, October, 1859, pp. 45-52,
Prof. John M. Richardson, Collegiate Institute, Boudon, Ga.,
gives a collect’on of twenty-eight demonstrations of this cele-
brated Theorem, among which, on p. 47, is the one under con-
sideration, ascribed to Young. He mentions the collections of
Camerer and Hoffmann; the former containing seventeen dem-
onstrations and the latter, published in 1819, thirty-threc.

Prof. Saradaranjan Ray of India gives the same demonstra-
tion on pp. 93-4 of Vol. 1 of his Geometry, and adds the fol-
lowing interesting historical note: * This proof is due to the
Persian Astronomer Nasiruddin, who flourished in the 13th
century under Jenghis Khan.” '
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SOLUTIONS OF EXERCISES.

4.

The angles of depression of two towns, T and T’, » miles
apart, are observed from a balloon and found to be arc-cot a
and arc-cot &, respectively ; the balloon moves in a line whose
azimuth with respect to the line joining the two towns is arz-
cos 0 ; upon arriving at a point known to be »z miles (horizon-
tally) from the first point of observation the angles of depres
- sion of T and T’ are now observed to be arc-cot & and arc-cot &
respectively. What was the height of the balloon at each
station? [Geo. R. Dean.]

' SOLUTION.

The figure is that of a quadrilateral whose sides are /a, ka/,
K&, 7'b" (if 7 and % be the respective heights of the balloon,
whose diagonals are » and 7 making the angle arc-cos # with
each other.

Let the diagonals » and m divide each other into two seg-
ments v, v and 2, u respectively. Then

(1).  xty=n ; (2). ztu=m.
(3). ‘ IPoiP=a+ 22—2x50,
(4)- e *=y?+ 2+ 2y20,
(5). K*8*=x2+ 1 + 2xul,
(6). B =y - —2yul.

Divide (3) by (4) and (5) by (6) putting for brevity a*/a*=p,
8 /b=y’ ; then
(7)- p(y:+e? +2yzﬂ)~'x +z7—2xz0,
(8). PP tut—zyul)=x>+u’+2xull.
- Put #—y for x in (7) and (8), also put m—z for uin (8),
then thcse equations become
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(9). (p—1)(y? + 22 +2y2fl)=n2—2ny—2n20,
“(10). (¢ —1) (¥ + 524 2p20)=n>+ m? + 2mnt~—p'm*
+2(pml—mbl—n)y
: +2(p'm—nll—m)z.
Eliminating ¥*+22 + 2y2f from these equations we get
(11). Ay+Bz=C.
where A, B and C are known.
In like manner put »—x for y and m—u« for 2 in (7) and
(8), whence result 7
(12). (r—1)(x? + 2 2uxt)y=m>—m*—pn*—20mnh
+2(pmt + pn—mb)x
+2(pufl—pm—m)u.

S (13). (o' —1)(x?+2? + 2uzt)y=—p'(n* —2nx—2nu)
Eliminating x® + 2 + 2u4f from these two equations we get
(14). Dx+Ex=G.

where D, E and G are known.

The four linear equations (1), (2), (11) and (14) solve the
problem, since the values of x, 7, # and z as determined from
them in the usual manner, when substituted in (3) and (5) give
% and %'

In particular, take (4) from - (3) and (6) from (5) and add
the results, whence

k@t —a' )+ 1262 —b2)=2mnb).

This gives the solution of the exercise as required in the text
(Snowball’s Trigonometry) where z=/'. [W. H. Echols.]
7.

On the sides of a triangle T, equilateral triangles are described,
all outwards or all inwards. We thus get two new triangles
T], Tg. Show that

(1) D+ do=5., where J, 4, Jy are the areas,
. [Frank Morley.]
SOLUTION.
If the mid-points of the sides of T be joined we get another
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triangle T" whose area is one-fourth that of T.

The straight line passing through a vertex of each triangle
Ty, To and T, is bisected by the vertex of T'. If the ends of
this straight line describe the sides of T; and T; in the same '
time moving uniformly, its mid-point describesa corresponding
side of T". Hence we have by a well known theorem, for the
relation between the areas of Ty, T and T, |

d=%d=%(di+ 4)—12,
A+ do=4(4+ 2).
Where £ is the area of the figure described by a straight line,
one end fixed, moving in a plane so as to always be equal in
length and parallel in direction to the moving straight line
above mentioned.

Let 4,, /, % be the altitudes of the equilateral triangles on

the sides of T. Then the figure £ is easily seen to be com-
. posed of three triangles whose areas are
2k sinC, 2/l sinA,  2/ick, sinB.
Where A, B and C are the angles of T.

But ho=ay 3, etc.
Hence 9=6(ab sinC+bc sinA + ac sinB)=g
Wherefore d+ dy=5. [Frank Bolles.]

.

In the Cassinian » ,=4? the angle between the central radius
and one focal radius is equal to that between the other focal
radius and the normal. [ Frank Morley.]

SOLUTION I.
Transforming to rectangular axes through the center we get
for the equation to the oval
xt+yht 202y —2a%x% + 2a°y?=K'—a®.
(1). The equation to the normal is
x+y?+a’
vy = g ()

'

. . R S
(2). Equation to one focal radius y—y'=— """ (x—2")
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(3). Equation to central radius y—y'=%l,(x——x’)

(4). Equation to the other focal radius y— '=;f;’_;(x—x’)

yattyita® oy

xa?+yi—a? a—x

Angle between (1) and (2) is arc-tan - -
ya~+y*tat vy
Ity +yi—a? a—x

v v
voata
Angle between (3) and (4) is arc-tan
R
ata x
These angles are equal since the expressions for their tans
are identical. [Geo. R. Dean, T. U. Tuylor.]

SOLUTION II.
By the construction, due I believe to Tschirnhausen, for
drawing the normal to any curve when its vectorial equation
S n ... r)=o0
is given, from the point on the curve lay off # along 7, and »
along 7, and join the ends of these lines; the normal bisects
this joining line. Hence from a figure the truth of the propo-

sition. [ Wm. P. Holman ]
10.

A 100 foot stcel tape is longer than standard, so that at a
certain temperature the tape measures a horizontal chord of
100 standard feet under a pull of 16 pounds supported at its
ends. Find the pull that will give 40, 50 and in general
D(< 100) standard foot horizontal chords, at same temper-
ature, when the tape is supported at each end of the 40, 50, D

foot graduations. [W. 0. Whitescarver.]
SOLUTION.

Let Ly be the true length of the (100") tape of false length
L feet, which subtends a chord of L true feet, under pull P.
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Let Ly be the true length of L' feet of the tape subtending
the chord of L’ standard feet, under pull P'.

Let € be the error of the tape, so that

Ly=I1.4-e.
Then the error being uniformly distributed along the tape
r—__T1°" L'
Loy=L"+ fe .
Then L, Lt+e LG+p)
Ly ., L T

The relation between the true length of the tape, the chord,
the pull and its weight W, is

(I)' 140 — 1 W‘) 2‘
=y )
Lo [W] 2 L' W) ?
2). Also = — 4.1 | | =1+ | 2
(2) D=1ty | =t (E )
Where W'=%W is the weight of the portion of tape used.

[4. J. Stewart, George Herdman and others.]

11.
A particle is set free at the highest point of a smooth sphere
which stands on a horizontal plane. The particle slightly dis-
turbed begins to move in a certain direction. Where does it
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meet the plane and what is the duration of motion ?
[Elmo G. Harris.]
SOLUTION.

The particle will describe the arc of a vertical great circle if
acted on by no other force than gravity. Its velocity at any
point on the sphere is /24 where 7 is the vertical descent.

Let ¢ be the angle which the radius to the particle makes
with the vertical through the ‘sphere center, then the duration
of motion on the sphere is (since the particle leaves the sphere
at a point where f/=arc-cos ), @ being sphere radius.

arc-cos 2

mfie ds _\ Jaf @
o 1 2ghk T 2 N\N&Y sinil

la
=§\/é_ log tan % arc-cos 3.

At this point as origin refer the particle after leaving the
sphere to vertical and horizontal axes of coordinates whose
plane through the center of the sphere is that of the trajectory.
The coordinates of the particle’s position at # seconds after
leaving the sphere is determined by

x=V/¢ sin#,
=3},iiagt'.

=V costl +3g1?
={agt + 3t

Where # determined from

a
af =%~

) 4
gives the duration of motion to the horizontal plane, and when
substituted in xand y above determines the point where it
strikes the plane. [7. U Taylor.]
12.
A smooth tube bent to the shape of a semi-ellipse is fixed in
a vertical plane, its major axis horizontal, its semi-minor axis
upward. A heavy flexible string passing through the tube and

ol

9
e+
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hanging at rest is cut at one end of the tube. What is the
velocity of the string as it leaves the tube ?  [W. H. Echols.]

‘ SOLUTION.

Let ;2 equal weight of unit length of string; P be any posi-
tion of the end of string which starts from A’

Let s equal arc A'P; / length of string hanging vertically
when P is at A’ / variable length /+s at any position of P;
F accelerating force at any position of P.

Then F=ul"+ /,ej sds sinfl=pul'+ f:a'.r %’,
=u(l' +1')-~u(/4-s+y)
20 ("S
L pi= j OFds, v —jf (d+s+y)ds.

21
=4 /S+3458%+ ds}
(S equals length of tube.) P { 3 j o7 .
In the equation to the ellipse let y equal & cos ¢.

Then ds=ay 1—<* sin 2¢ ¢ dg.

; 1
ff’yds:zab I‘O! { 1—:*sin?¢ } 2coscde,

T

~(I . i
=2aésf 2 { — —sm-g} 2cosedy,
Jo s

j— 5 1
—ahe ) s 1 0 1 . iz
=abs {Smsf \}T——sm-’g+—rsm (¢ sinw) % 2"
e~ c” o

—=qbs % \}:—Q—I + %sin—ls } »

=ab {\Il—sz + sin1e : =53 +§-Z-)sm e,

5

“m ) g

e
.

v=\f_2€_ f 154182 +82 4+ et
/+S! S )
[ Wm. P. Holman.]
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: 14.

Given on the ground a circular curve of known radius inter-
secting a given straight line at a given point and given angle ;
it is required to unite the two by another circular curve of
given radius in such a manner as to have a common tangent of
length 7 between the curves. [W. H. Echols.]

SOLUTION. )

Let D be the distance between the centers.

¢ be the length of given tangent.

« the angle of intersection.

R, 7 radii of the curves.

T distance of vertex of a from the P.T.

Theu D?*=(R +7)*+2=(T+r sinu)?+ (R—7 cosu)’.

Whence T=rsina{ + | s+ 2t2Rr(1+cosz) _ |-
\! + gy
¥ sinca

The central angle of the R curve is ¢— ¥ where

P ¢t . T+Rsina
tan ——————R_I_r, simng¢ =D
If /=0, we have solution of Exercise 13.

— 2R (1 +cos)
=y sinuz < =& 1 +° _ ,
{ \/ # sina - I }

and for the central angle f,

. T+R sinz .

sin i=—5———
R“rr

[Geo R. Dean.  Also solved by T. U. T aylor.]

15.
a®— x?)arc-cos [——i_:—_— )]
S@-w ez ) (W H Echols]

SOLUTION. '

Integrating by parts

r(a" —x?)arc-cos [-__“i_.__-l dx
N L 1

21 22— 2 ]
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201
= farc-cos [2 2 _-_-Li(a —_)a
* Vat—x?
2 2
=x(a®—"y arccos |21 g f——'——“————-———x dx———., .
3 L2y 22— ] V (a?—x%)(3a°—4x7)
g xtdx

V(a®—x%)(3a°—4x")

The two last mtegrals are known forms, and give

x2dx . 2x
=—3}arc-sin—-__ +arc-tan —————
1 (a®—2%)(3a"—4x7) ay’ V304
atdx =x1/3az—4.;§_ Imznrc-sin ;
V(a®—x?) (3% — 4a?) 8 16 ay’3
+ a*arc-tan ,_L?
17322 —4a2
f (@*-—x?)arc-cos [ i -la’x
L2y 2—2 |
= ax:[//3622’—4x2 + 13agarc -sin _2%_
24 48 ay'3
2 1 24°
+x 22—2%") arc-cos [ d —_ arc-tan -,
( 3 ) l2va—2l 3 V'30%—42*

[Wm. E. Heal.]



202 . EXERCISES.

EXERCISES.

21.

A horizontal beam, span @, resting on two supports at ends
is loaded so that the load per running foot varies as the square
of the distance from one support. Find the tangent to the
elastica at each end of the beam and the maximum deflection

and that at the center. i [7. U. Taylor.]
22.

A horizontal beam, span «, resting on two supports at its
ends has the shape of a right circular cone whose axis is hori-

zontal. Find the central deflection. (72 U. Tavior.]
23.
“ ‘ dx dy
T [G. H. Harvill]
(1-+a?+9?)
24,

In any triangle the rhombi on « and & with angle C are
together equal to the rhombus on ¢ with altitude in the same
ratio to ¢ as that of the diagonals of the rhombi on @ and 4.

' ' (W, H Echols.]
25.

Let O be the orthocenter of the triangle ABC and D, E and
F feet of the perpendiculars from A, B and C on the opposite
sides respectively. Show that the areas of the triangles BOD,
COE, AOF are together equal to the areas of DOC, OEA and

FOB taken together. 6 [W. H. Echols.]

: 26.

An elastic ring is gently placed on a smooth vertical cone of
revolution. Find the position of equilibrium and the lowest
position of descent. Also determine the time of vibration.

[W. H. Echols.]
27.

In any quadrilateral the sum of the squares on the lines join-
ing the mid-points of the sides is equal to the squares on the
diagonals. ' [Sallie Millard.]
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