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TRANSLATOR’'S INTRODUCTION.

Through all its editions up to the last, America's favorite
geometry, Wentworth’s, taught in all seriousness the following
proposition (see 3d edition, 1887, §387, page 224): 7o in-
seribe a regular polygon of any number of sides in a given
circle. But in this, as in some other respects, the book was
only more than two thousand years behind the times. Euclid
would have smiled at the unconsciousness with which this
American Jonah swallowed his impossible whale. Euclid
could inscribe regular polygons of 3, 4, 5, I35 sides or numbers
obtained by doubling these. Those of 7,9, 11, 13, 14 sidesno
man ever could or ever will geometrically inscribe. When on
the evening of March 3oth, 1796, Gauss showed to his student
friend, the Hungarian, Wolfgang Bolyai, the formula which
gave the geometric inscription of the regular polygon of 17
sides, it was with the remark that this alone could be his
epitaph, if it were not a pity to omit so much that went with it.

Was it this break beyond Euclid’s enchanted bounds that
started these two young men in that re-sifting of the very
foundations of geometry which led to those new conceptions
of the whole subject just now, after another hundred years, be
ginning to be taught in America’s foremost universities?

Wolfgang Bolyai was born February oth, 1773, in that part
of Transylvania called Székelyfold. He studied first at Enyed,
afterward at Klausenburg, and in 1796, with a son of Baron
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Simon Kemény, went first to Jena, then to Goittingen. Here
he met Gauss, then in his 19th year, and the two formed a
friendship which lasted for life. The letters of Gauss to his
friend were sent by Bolyai in 1855 to Professor Sartorius von
Walterhausen, then working on his biography of Gauss.

Gauss said that Bolyai was the only man who completely
understood his views on the metaphysics of mathematics.
Everyone who met him felt that he was a profound thinkerand
a beautiful character.

Benzenberg said in a letter written to Gauss in 1801 that
Bolyai was one of the most extraordinary men he had ever
known. :

On his return home in 1802 Bolyai was made professor of
mathematics in the Reformed College of Maros-Visirhely.

Here during the 47 years of his active teaching he had for
scholars most of the present professors in Transylvania, and
nearly all the nobility of the country.

Sylvester has said that mathematics is nearest akin to poetry.
Bolyai’s first works published were dramas, and translations of
English and German poetry into Hungarian.

In 1830 he published an arithmetic. Then came his chief
work, to which he constantly refers in his later writings. It is
in Latin, two volumes, with title as follows:

Tentamen juventutem studiosam in clementa matheseos purac,
elementaris ac sublimioris, methodo infuitivo, evidentiaque huic
propria, introducendi.  Cum Appendice triplici.

Auctore Professore Matheseos et Physices Chemiaeque publico
erdinario.

Tomus primus. Maros Vasarhelyini, 1832.

Tomus secundus. 1833.

The first volume contains:

Preface of two pages: Lectori saluten.

A folio table: Explicatio signorum.
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Index rerwm (1—xxx11). Errata { XXX1II—LXX1V). Errores
recentins detecti ( LXX1V—XCVIII).

Now comes the body of text (pages I 502). Then with
special paging and a new title page, comes the immortal ap-
pendix compos d by John Bolyai, son of Wolfgang:

APPENDIX scientiam spatii absolute veram exhibens: a veri-
tate aut falsitate axiomatis X1 Euclidei (a priori haud ungquam
decidenda) independentem; adjecta, ad casum jfalsitatis, guad-
ratura circuli geometrica. Auctore JOANNE BOLYAl de eadem,
Geometrarum in Exercitu Caesaris Regio Austriaco Castrensium
Capitanco. Twenty-six pages of text, two pages of errata.

Finally (pages 1 xvi), in Hungarian, the names of the sub-
scribers, the nomenclature, and additions to this volume by W.
Bolyai. Then 4 plates of figures, the first 3 pertaining to the
body of the text, the last to the Appendix.

It is this Appendix which we now give for the first time in
English. Milton received but a palitry 35 pounds for his Para-
dise Lost; but it was at least plus 5, ~ John Bolyai, as we learn
from volume second, page 384, of the Zentamen, contributed,
- for the printing of his eternal 26 pages, 104 florins 34 kreuzers.

His father, treating in the body of the work the theory of
parallels, says, « propos of the systems which are possible when
we contradict Euclid’s axiom xi1, “Appendicis Auctor, rem
acumine singulari aggressus, Geometriam pro omni casu
absolute veram posuit, quamvis e magna mole, tantum summe
necessaria, in Appendice hujus tomi exhibuerit, multis (ut
tetraedri resolutione generali, pluribusque aliis disquisitionibus
elegantibus) brevitatis studio omissis.”

And again: “Nihilominus tamen quaestio suboritur: quid si
novum axioma detur, per quod determinetur #? Tentamina
idcirco, quae olim feceram, breviter exponenda veniunt, ne
saltem alius quis operam eodem perdat.”” He speaks of his
son's beautiful treatise with natural admiration: Thus, Vol. I,
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p. 502, Nec operae pretium est plura referre; quum res tota ex
altiori contemplationis puncto, in ima penetranti oculo, tractetur
in Appendice sequente,a quovis fideli veritatis purae alumno
digna legi. '

And Vol. II, page 380, “Denique aliquid Auctori Ap-
pendicis . . . addere fas sit:quo tamen ignoscat, si quid non
acu ejus tetigerim.”

This wonderful production of pure genius, this Appendix
which makes all preceding space only a special case, only a
species under a genus, and so requiring a descriptive adjective,
Luclidean, this strange Hungarian flower was saved for the
world after more than thirty-five years of oblivion, by the rare
erudition of Professor Richard Baltzer of Dresden, afterward
professor in the University of Giessen. In the second edition
of his Elemente der Mathematik in 1867, Dr. Baltzer called
attention to this re-making of Geometry, and the name Bolyai
was at last given its place in the history of science. Before
that, the father Wolfgang Bolyai seems to have been the only
person who really appreciated the work of the son John
Bolyai. He refers to it in a subsequent work printed in 1846,
Uertan elemei kezdoknek, figures for which, we learn, were
drawn by his grandson, John's son. Then comes his last
work, the only one composed in German, entitled:

Kurzer Grundriss eines Versuchs :

1.  Die Avithmetik, durch zweckmassig construirte Begriffe,
von eingebildeten und unendlich-kleinen Grossen gereinigt,
anschaulich und logisch-streng darzustellen.

1I. In der Geometrie, die Begriffe der geraden Linie, der
Ebemé, des Winkels allgemein, der winkellosen Formen, und
der Krummen, der verschiedenen Arten der Gleichheit ». 4. g/.
nicht nur scharf zu bestimmen, sondern auch ihr Seyn im
Raume zu beweisen; und da die Frage, o zwey wvon der
dritten geschnittenen Geraden, wenn die Summe der inneren



208 HALSTED—BOLYAI: INTRODUCTION.

Winkel nicht=2R, sich schneiden oder nickht? niemand auf der
Erde ohne ein Axiom (wie Euclid das x1) aufzustellen, beant-
worten wird; die davon unabhangige Geometrie abzusondern,
und eine auf die Ja—Antwort, andere auf das Nein so zu
bauen, dass die Formeln der letzten, auf einen Wink auch in
der ersten giltig seyen.

Nach einem lateinischen Werke von 1829, M. Vasarhely;
und eben da selbst gedruckten ungarischen:

Maros-Vasirhely, 1851, 88 pages of text.

In this he says, referring to his son’s Appendix scientiam
spatii ubsolute veram exhibens; “Some copies of the work
published here were sent at that time to Vienna, to Berlin, to
Goettingen. . . . From Goettingen the giant of mathe-
matics, who from his pinnacle embraces in the same view the
stars and the abysses, wrote that he was charmed to see exe-
cuted the work which he had commenced, only to leave it after
him in his papers.”

On the oth of March, 1832, Wolfgang Bolyai was made cor-
responding member in the mathematics section of the Hun-
garian Academy. As professor he exercised a powerful in-
fluence in his country. In his private life he was a type of
true originality. He wore roomy black Hungarian pants, a
white flannel jacket, high boots, and a broad hat like an old-
time planter’s. The smoke-stained wall of his antique domicile
was adorned by pictures of his friend Gauss, of Schiller, and of
Shakespeare, whom he loved to call the child of Nature. His
violin was a constant solace. He died the 20th of November,
1856. He ordered that his grave should bear no mark.

His son John died in 1860, seven years before the world
began to know of his unique and wonderful work. He was
born at Klausenburg, in Transylvania, the 15th of De-
cember, 1802,

He studied in one of the institutions founded in Transylvania
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by the Imperial Academy of Engineering of Vienna, and
graduated the yth of September, 1822, as cadet of engineers.
The first of September, 1823, he was made second lieutenant,
and the 16th of June, 1833, he was put on the retired list as
captain. His profound mathematical ability showed itself
physically not only in his handling of the violin, where he was
a master, but also of arms, where he was unapproachable. It
was this skill which caused his being retired so early from the
army, though it saved him from the fate of a kindred spirit,
the lamented Galois, killed in a duel when only 19. Bolyvai
when in garrison with cavalry officers was challenged by 13 of
them at once. He accepted all, only stipulating that between
each duel he might play a bit on his violin. He was victor
thirteen times.

Beyond the Appendix, whose translation into English is here
given, John Bolyai published nothing; and the thousand pages
of manuscript which he left have never been read by a com-
petent mathematician. They are in the library of the Re-
formed College of Maros-Vasirhely. We hear that he had
conceived the project of working out a universal language,
akin to that which music has, or that of mathematics.

If in this he was only an anticipator of Volapiik, we think
nothing of it; but it rather seems that he was another Boole,
and if so, what discoveries in algorithmic logic might lie
hidden in his papers!

In 1853 he must have thought of printing part of his mathe-
matical works, for he left parts of a book with the title:

Principia doctrinae novae quantitatum imaginariarum per-
fectae uniceque satisfacientis, aliaeque disquisitiones analyticae
et analytico-geometricae cardinales gravissimaeqgue; auctore
Johan. Bolyai de eadem, C. R. austriaco castrensium captaneo
pensionato.

Vindobonae, vel Maros-Visarhelyini, 1853.
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To him who hath shall be given, and it would be natural
enough if the world still gives to Gauss, the greatest and best
known mathematician of his generation, some of the credit
which really belongs to the name of Bolyai. On the comple-
tion of his mathematical studies at the university. the Georgia
Augusta, Bolyai left Goettingen the 5th of June, 1799.

From Braunschweig, Gauss writes to him in Klausenburg at
the end of the year:

“I very much regret that I did not make use of our former
proximity to find out more of your investigations in regard to
the first grounds of geometry; I should certainly thereby have
spared myself much vain labor, and would have become more
restful than any one such as I can be, so long as, on such a
subject, there yet remains so much to be wished for. In my
own work thereon I myself have advanced far (though my
other wholly heterogeneous employments leave me little time
therefor), but #4¢ way, which I have hit upon, leads not so
much to the goal which one wishes, as much more to making
doubtful the truth of geometry. I have hit upon much which,
with most, would pass for a proof, but which in my eyes proves
as good as nothing. For example, if one could prove that a
rectilineal triangle is possible whose content may be greater
than any given surface, then am [ in condition to prove with
perfect rigor all geometry. Most would indeed let that pass
as an axiom; I not; it might well be possible, that, how far
apart soever one took the three vertices of the triangle in
space, yet the content was always under a given limit. I have
more such theorems, but in none do I find anything satisfying.”

From this letter we see that in 1799 Gauss was still trying to
prove a priovi the eternal reality of the Euclidean system, what
John Bolyai calls the system 3. Some time in the next thirty
years he comes to Bolyai's conclusion, for in 1829 he writes to
Bessel as follows :
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“At times in certain free hours, I have meditated again on a
theme which, with me, is already nearly 40 years old, I mean
the first grounds of geometry. 1 do not know whether I have
spoken to you of my views thereupon. Here also have I much
still further consolidated, and my conviction that we cannot
found geometry completely a priori, has become, if possible,
still firmer. Meanwhile, T am still far from attaining to the
working out of my wery extended researches for publication,
and perhaps that will never happen in my lifetime, for I dread
the outcry of the opposition if I should express my views
Sully.’

Later Gauss adds:

“According to my deepest conviction, the science of space
has to our science of necessary truths a relation wholly
'different from the pure science of quantity; there is lacking to
our knowledge of the former {space lore) throughout, #as¢
complete persuasion of its necessity (consequently also of its
absolute truth) which is peculiar to the ZJaffer; we must in
humility admit, that, if number is merely a product of our
mind, space has also a reality beyond our mind, of which we
cannot fully foreordain the laws a priori”

More than twenty years after this, Gauss heard from his own’
pupil, Riemann, the marvelous dissertation which to Bolyai's
spaces, got by denying the axiom of parallels, added as many
others got by denying the infinite size of the straight line.

Beltrami showed (““Saggio di interpretazione della geometria
non-euclidea,” Giorm di Matematiche, 1868) that Bolyai's
geometry in a plane is equivalent to the Euclidean geometry on
a surface of constant negative curvature. Riemann’s finite
space, of positive curvature, was studied by Felix Klein
(1871—2, Math. Annalen 1v & v1), and by him named Ellipisc,
while Euclid’s he called Paraébolic, and Bolyai's Hyperbolic. 1
notice that our new Century dictionary confuses Hyperbolic
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with Elliptic geometry, giving to each the definition of the
other.

Cayley carried on the subject to trigonometry in an article
entitled, “On the Non-Euclidean Geometry (Mathematische
Annalen, v. pp. 630—4, 1872(, which begins as follows: *“The
theory of the Non-Euclidean Geometry as developed in Dr.
Klein's paper “Ueber die Nicht-Euclidische Geometrie” may
be illustrated by showing how, in such a system, we actually
measure a distance and an angle and by establishing the trigo-
nometry of such a system. I confine myself to the “hyper-
bolic” case of plane geometry; viz. the absolute is here a real
conic, which for simplicity I take to be a circle; and 1T attend to
points zwithin the circle.

I use the simple letters @, A, . . to denote (linear or
angular) distances measured in the ordinary manner; and the
same letters with a superscript stroke, 4, 4, . . to denote the
same distances measured according to the theory.” His
result is ‘“that the formule are in fact similar to those of
spherical trigonometry with only cos h &, sin h a, etc., instead
of cos a, sin a, etc.”

In my first paper on the Bibliography of Hyper-Space and
‘Non-Euclidean Geometry (American Journal of Mathematics,
Vol. I, No. 3, pp. 261-276, 1878), I mentioned also Réthy’s
article: Die Fundamental Gleichungen der nicht-euklidischen
Trigonometrie auf elementarem Wege abgeleitet:

Grunert’s Archiv, LVIII, 416; also a number of works
carrying these ideas on into mechanics.



EXPLANATION OF SIGNS.

The straight ABC means the aggregate of all points situated in
the same straight line with A and B.

The sect AB means that piece of the straight AB between the
points A and B.

The ray AB means that half of the straight AB which com-
mences at the point A and contains the point B.

The plane ABC means the aggregate of all points situated in
the same plane as the three points (not in a straight)
A, B, C.

The hemi-plane ABC means that half of the plane ABC which
starts from the straight AB and contains the point C.

ABC means the smaller of the pieces into which the plane
ABC is parted by the rays BA, BC, or the non-reflex
angle of which the sides are the rays BA, BC.

ABCD (the point D being situated within . ABC, and the
straights BA, CD not intersecting) means the portion of
. ABC comprised between ray BA, sect BC, ray CD,
while BACD designates the portion of the plane ABC

. comprised between the straights AB and CD.

-L= is the sign of perpendicularity.

|| is the sign of parallelism.

/. means angle.

rt. [ is right angle.

st. /_ is straight angle.

% s the sign of congruence, indicating that two magnitudes
are superposable.

AB/A CD means . CAB=/ ACD.

X ..~ a means x converges toward the limit a.

/\ s triangle.

(Or means the [circumference of the] circle of radius 7.

(D means the area of the surface of the circle of radius 7.



The Science of Absolute Space.

1. If the ray AM is not cut by the ray BN, situated in
M p N the same plane, but is cut by every other ray BP
comprised in the angle ABN, we will call ray BN
parallel to ray AM, that is to say we will have BN
I AM.

It is easy to see that there is one suck ray I'N,
c and only one, passing through any point B (taken
outside of the straight AM), and that the sum of
Al the angles BAM, ABN cannot exceed a st. L.
B Because, in moving BC around B until BAM -
E . ABC=st. /_, there will be an instant where ray

Fic. 1.  BC will commence not to cut ray AM, and it is
then that we have BC || AM. It is clear, at the same time,
that BN || EM, whatéver be the point E taken on the
straight AM. ‘ ‘

If while the point C goes away to infinity on ray AM, we
take always CD=CB, we will have constantly CBD=CDB
< NBC. Now NBC-:0; therefore also ADB-=0.

2. If BN || AM, we will have also CN || AM. Take

M ~n D any point of MACN. If C is on ray BN,

RS ray BD will cut ray AM, since BN || AM.
A\ Therefore ray CD will also cut ray AM. If
C is situated on ray BP, take BQ | CD; BQ
¢ will fall within the / ABN' (§1), and conse-

quently will cut ray AM; therefore ray CD will

also cutray AM. Therefore every ray CD (in
¢ ACN) cuts, in each case, the ray AM, without
p CN itself cutting ray AM. Therefore we
FiG. 2. have always CN || AM.
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3. If BR and CS are each || AM, and Cis not situated
on the straight BR, then ray BR and ray CS do not intersect.
Because if ray BR and ray CS had a common point D, then
(§ 2) DR and DS would be each || AM, ray DR (§ 1) would
coincide with ray DS, and C would fall on the straight BR,
which is contrary to the hypothesis.

4. If MAN>MAB, we will have, for every point B of

M ray AB, a point C of ray AM, such that
D P BCM=NAM.
For, (§1), we may draw BD so that
C B BDM >NAM, ard making MDP=:MAN,
B will be contained in NADP. If there
/ N fore we carry NAM along AM, until ray
FiG. 3. AN arrives on ray DP, ray AN will have
necessarily passed through B, and somewhere we have had
BCM=NAM.
5. If BN | AM, there is on the straight AM a point F such
N that FM_ BN. For we can get (§1) BCM>.
CBN, and if CE=CB, it follows that EC.: BC,
whence BEM< EBN. Move the point P on EC.
The angle BPM, for P near E, will commence by
being < the corresponding angle PBN, and for
P near C, it will finish by being >PBN. Now
the angle BPM increases continuously from BEM
to BCM, since (§ 4) there exists no angle >BEM
and < BCM, to which BPM can not become
equal. Likewise PBN decreases continuously

G from EBN to CBN. There is therefore on EC a
Fic. 4. point F such that BFM=FBM.
6. If BN|AM and E any point of the straight AM, and
G any point of the straight BN, then GN [|[EM and EM || GN.
Because we have (§1) BN||EM, whence (§2) GN || EM.
If now we make (§3) L BFM=/_FBN, then MFBN*2NBFM,
and consequently, since BN || FM, we have also FM || BN, and

M

~

=Y =
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from what precedes EM || GN.

7. If BN and CP are each || AM, and C not on thc straight
BN, we shall have also BN || CP.

The rays BN and CP do not intersect (§3)- .
Moreover, AM, BN and CP either are or are not

D in the same plane, and in the first case, AM
either is or is not within BNCP.

1. If AM, BN, CP are in the same plane, and

5 a ¢ AM falls within BNCP, then every ray BQ drawn

FiG. 3. within /. NBC will cut the ray AM somewhere in
D, since BN || AM. Moreover, since DM || CP (§6), the ray
DQ will cut the ray CP, therefore BN | CP.

2. If BN and CP are on the same side of AM, one of them,
for example CP, will be contained between the two other
straights BN, AM.

Now, every ray BQ within /. NBA meets the ray AM; con-

n M sequently it also meets CP. Therefore BN || CP.

T 3. If the planes MAB, MAC make an angle,

Q then CBN and ABN can have in common nothing

but the straight BN, while the straight AM (in
ABM) will have nothing in common with the

N M P
|

g8 ¢ a ray BN, and in consequence, also NBC will have
Fic. 6. nothing in common with the straight AM.

Now every hemi plane BCD, drawn through the ray BD
RNM P (situated in /_NBA), will meet the ray AM, since
" ray BQ meets ray AM (as BN || AM). Therefore
in revolving the hemi-plane BCD around BC until
this hemi-plane ébegins to leave the ray AM, the
hemi-plane BCD will come into coincidence with
the hemi-plane BCN. By parity of reasoning this
same hemi-plane will come into coincidence with
hemi-plane BCP. Therefore BN is in the plane




HALSTED—BOLYAI: SCIENCE OF ABSOLUTE SPACE. 217

BCP.  Moreover, if BR || CP, then (AM being also || CP) BR
will be by the same reasoning, in the plane BAM, and also
(since BR || CP) in the plane BCP. Therefore the straight
BR, being common to the two planes MAB, PCB, is identical
with the straight BN. Therefore BN || CP.*

If therefore CP || AM, and B exterior to the plane CAM,
then thc intersection BM of the planes BAM, CAP is | at the
same time to AM and CP. '

8. If BN || CP and , CBN=/ BCP, and AM (in NBCP)
is ~I- the sect BC at its mid point, then BN || AM.

N M p For, if ray BN met ray AM, then ray CP

0 would also meet ray AM at the same point
(because MABN®2MACP), and this would be
common to the rays BN, CP themselves, while on
the contrary BN || CP. Moreover every ray BQ
interior to ; CBN meets ray CP; therefore also it

Fxg_ 8. © meets ray AM. Consequently BN || AM.

9. 1f BN || AM, and MAP _L MAB, and the dihedral
£, DNBA of the planes NBD, NBA
(prolonged on that side of MABN where
MAP is) is <rt. 2, then MAP and NBD
intersect.

Make ; BAM=rt. ;, and AC-L BN
(whether or not C coincides with B), and
CE . BN (in NBD).

We shall have by hypothesis / ACE

Fic. 9
<rt. £, and AF (L CE) will fall within £/ ACE.

Let ray AP be the intersection of the hemi-planes ABF,
AMP( which have the point A common). We shall have (since
BAM L. MAP) , BAP=/ BAM=rt. ~.. ‘

*In placing this third case before the other two, these could be demon-
strated with more brevity and elegance, like case 2 of §10. (Author’s note. )
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If now we move the hemi-plane ABF around the fixed points
A and B until it coincides with the hemi-plane ABM, then ray
AP will fall on ray AM, and since AC -l. BN, and sect AF<
sect AC, then sect AF will have its extremity between ray BN
and ray AM, and consequently BF will fall within z ABN.
Now, in this position, ray BF will meet ray AP (since BN |i
AM); therefore ray AP and ray BF intersect also in the
original position, and the point of meeting is common to the
hemi-planes MAP and NBD. Therefore the hemi-planes MAP
and NBD intersect. From this we may deduce that the hemi-
planes MAP and NBD intersect whenever the sum of the
dihedral angles which they make with MAB is <rt. /.

10. If BN [AM, and (P " AM, and /£ ABN=;/ BAM and
£ ACP=/ CAM, thenalso BN | CP and  BUN=, BCP.

For, either the planes MADB,
MAC make an angle, or they
form one and the same plane.

1. In the first case, draw
the hemi-plane QDF -L sect
AB at its mid point. Then we
will have DQ L AB and con-
sequently DQ "AM (§8). Like-
wise if hemi-plane ERS is -l-
sect AC at its mid point,

ER  AM.

Consequently (§ 7) DQ | ER.

Hence (§9) the hemi-planes QDF and ERS intersect, and
have (§7) their intersection the ray FS | DQ. Moreover
since BN |/ DQ, we have also FS || BN. Besides for every
point F of FS we have the sects FB=FA=FC, and so the ray
FSisinthe hemi-planeTGF L sect BC at its mid point. Now
since FS | BN we have (§7) GT || BN. In the same way
GT || CP.  But GT L sect BC at its mid point. '
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But GT -L sect BC atits mid point. Therefore TGBN %2
TGCP (§1), and BN || CP and £ CBN=/ BCP.

2. If BM, AM, and CP are in one and the same plane, let
FS be exterior to this plane and FS | AM, and s AFS=
L FAM. Then from what precedes, FS| BN, FS| CP,
(. BFS=/, FBN, ; (CFS=; FCP, consequently BN || CP and
[, .CBN=, BCP.

11.  Consider the aggregate of the point A and «// points
such that for any one of them B, when BN || AM, also £ ABN
=/ BADM, and designate this aggregate by F; and call L the
intersection of F with any plane drawn through the
straight AM. ‘

F has a point, and one only, on every straight || AM; and L
is divided by AM into two congruent parts.

Call the ray AM #he axis of L. Evidently, in any one plane
passing through the straight AM, there is for the axis ray AM
a single line L. Call every line L so defined, the L of ray AM
(in the plane, of course, that one considers). By the revolu-
tion of L around the straight AM we generate the F of which
riy AM is called the axis, and which is, reciprocally, ke F of
the axis ray AM.

12. If Bis any point of the L of ray AM, and BN || AM
and /. ABN==; BAM (§11), then the L of ray AM andthe L
of ray BN coincide. For suppose L' the L of ray BN. Let ¢
be any point of L', and CP || BN and / BCP=, CBN (§11).
" Since BN || AM and £ ABN=/ BAM, therefore also CP || AM
and ; ACP=; CAM (§ 10). Consequently, C will be situated
on L. Andif Cis any point of L, and CP || AM and £ ACP
=, CAM, then also CP| BN and / BCP=/.CBN (§10);
therefore C is likewise situated on L' (§ 11). Thus L and L'
are identical, and every ray BN (|| AM) is a new axis of L,
and, if its origin is joined with that of any other axis, they make
equal angles with the joining sect.
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The same property may be demonstrated in the same.
manner for the surface F.

13. If BN || AM, and CP || DQ, and , BAM+/ ABN=

st. /_, then also / DCP+/ CDQ==st. ~..
so P Q Let sect EA=sect EB,
' and £ EFM=, DCP (§ 4).
Since /, BAM + L ABN=
st. £, =7 ABN + / ABG, we
have / EBG=/ EAF.

If therefore we have in
F>‘</B addition sect BG==sect AT,

L & | then AEBG 2 AEAF,
R D/, BEG=, AEF and Gwill
Fig. 11. fall on the ray FE. We
have moreover y GFM + / FGN=st. , _(since , EGB=/ EFA\).

Moreover GN|FM (§6).

Therefore if MFRS 2 PCDQ, then RS|GN (§7), and R
falls within or without the sect FG (unless sect CD=sect FG,
in which case the proposition would be evident).

1. In the first case / FRSis not>st. / —/ RFM=, FGN,
since RS||FM. But as RS|GN, 2 FRS is not <, FGN.
Therefore ; FRS=/ FGN, and ;RFM + / FRS=,; GFM-
¢ FGN==st. ;. Therefore also ;/ DCP-+, CDQ=st. /.

2. If R falls without the sect FG, then / NGR=; MFR.

Make MFGN Z NGHL %2 LHKO, and so on until FK=FR
or begins to be greater than FR. Then KO|HL|FM (§7).

If Kfalls on R then KO falls on RS (§ 1), and consequently
L RFM+ / FRS=/ KFM+/ FKO=/; KFM-+, FGN=st. /.
But if R falls within the sect HK, then (as in 1) we have
LRHL+/ HRS=st. y =/ RFM+/ FRS=, DCP-+, CDQ.

14. If BN||AM, and CP|DQ,and / BAM + ; ABN< st. L,
then also / DCP+/ CDQ<st. , .

Because, if 4 DCP+, CDQ were not <st. /., this sum (§ 1)

M SN L
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would be =st. ;. Then we should have (§13) LBAM+
LABN=st. /, which is contrary to the hypothesis.

15. In consideration of What has been established in §§13
and 14, we will designate by X the system of geometry which
rests on the hypothesis of the truth of Euclid's axiom X1, and by
S the system founded on the contrary hypothesis. )

All vesults enunciated without deszgnatmg expressly whether
they belong to the system X or the system S, should be con-
sideved as enunciated absolutely, that is true whether placed in
system 2 or system S.

16. I1f AM is the axis of a line L, this line L, in the system
2, will be a straight ... AM.

N MT - Suppose BN an axis at any point B of L; then
in 2, 2 BAM+ /£ ABN=st. /, therefore / BAM
=rt. /.

And if C is any point of the straight AB, and
CP||AM, then (§13) L ACP=; CAM, aud con-
— ¢ sequently C will be on L (§11).

Fic. 12. But in S, there exists nowhere on L noron F
three points in a straight. For some one of the axes AM, BN,
CP, (e. g AM) falls between the others, and then (§14)
.. BAM and s CAM are each <rt. 2.

17. Lin Sis a line, and F a surface. For (§II) every
plane drawn perpendicular to the axis ray AM through any
point of F, cuts F in [the circumference of] a circle, of which
the plane (§14) is perpendicular to no other axis BN. If we
revolve F about BN, any point of F (§ 12) will remain on F,
and the section of F by a plane not -l- ray BN will describe a
surface. Now, whatever be the pomts A, B taken on F, I¥ can
be so moved 77 its trace that A falls upon the trace of B (§ 12).

Thus F 1s a uniform surface, a surface which will slide in its
own trace.



222 HALSTED—BOLYAI: SCIENCE OF ABSOLUTE SPACE.

It follows (§§ 11 and 12) that L is a uniform line, a line
which will slide on 1its trace.*

18. The intersection of F with any plane drawn through a
point A of F obliquely to the axis AM,is, in the system S, a
circle.

Take A, B, C, threc points of this section, and BN, CP, axes.

AMBN and AMCP make an angle, otherwise the plane de-
termined by A, B, C, (§ 16), would contain AM, which is con-
trary to the hypothesis. Therefore the planes -~ the sects AB,
AC at their mid points intersect (§ 10) in a certain axis ray FS
of F, and we have FB=FA=FC.

N P Make AH -L FS, and revolve
FAH around FS; A will describe a
circle of radius HA, passing through
B and C, and situated both in F and
in the plane ABC; moreover, F and
plane ABC have nothing common
4 but the circle () HA (§ 16).

Fic. 13. It is also evident that in revolving
the portion FA of the line L (as radius) in F around A, its ex-
tremity will describe the circle with radius HA, O HA.

19. The perpendicular BT to the axis BN of L (drawn in
the plane of L) is, in the system S, the tangent to the line L.

N For L has in common with ray BT only the
point B (§ 14). But if BQ is situated in the
plane TBN, then the center of the section
made in the F of ray BN by the plane
drawn through BQ perpendicular to TBN
(§18), is evidently on ray BQ; and if sect

r BQ is a diameter, it is clear that ray BQ
Fic. 14. will cut in Q the L of ray BN.

*It is not necessary to restrict the demonstration to the system S; we
may easily establish that it is true absolutely for S and for }',

Q

ks
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20. Any two points of F determine a line L (§§ 11 and
18); and since (§§ 16 and 19) L is -L.to all its axes, every /
of lines L. in F is equal to the £ of the planes drawn through
its sides perpendicular to F.

21. Two line-rays, L-ray AP and L-ray BD, in the same
surface F, making with a third line L, namely with line AB, in-
terior angles of which*the sun is <st. £, intersect.

P M We shall designate by line AP, in F, the

i line L drawn through A and P, and by L-ray

’: AP that half of this line beginning at A,
i which contains the point P.

B Now, if AM, BN are axes of F, the hemi-

Fie. 15. planes AMP, BND intersect (§9), and F will

meet their intersection (§§ 7 and 11). Therefore, L-ray AP

and L-ray BD intersect.

N

i
1
|
1
i
!
1
'

A

From this it follows that Euclid's Axiom X7 and all the con-
sequences deduced from it in geometry and plane trigonometry
are true absolutely in F, the lines L playing the role of
straights. (onsequently the trigonometric functions will be
taken here in the same sense as in the system ; and the circle
traced in F and having for radius a piece of line L equal to 7,
will have for length 277; and area of (Or (in F)==#r (&
designating the length of 301 in F, that is to say, the known
number 3.1415926-+ ).

22. Let line AB be the L of ray AM, and C a.point of ray
AM. Suppose the L CAB (formed by the ray AM and the
L-ray AB), translated first along the L-ray AB, then along the
L-ray BA, each way to infinity. The path CD of the point ('
will be the line L of ray CM.

For, calling this latter L', let D be any point of line CD, let
DN be || CM, and B the point of L situated on the straight
DN. We shall have BN || AM, and / ABN=,; BAM, and sect
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M AC=sect BD, and consequently DN || CM
H and 7 CDN=, D(M; therefore D is on L.
G Moreover, if Dis on L' and if DN || CM,

and B the point of L on the straight DN,
< we shall have AM | BN, and ,BAM=
] /ABN, and CM || DN and ,DCM=

/ CDN, whence follows that sect BD=sect

FiG. 16. AC, and D falls on the path of the point C.
Therefore, L' is identical with the line CD. We‘shallrepresent
the relation of such a line L with L by the notation L L.

23. If the line L represented by CDF is || ABE (§22); if,
moreover, AB=BE, and the rays AM, BN, EP are axcs, we
shall evidently have CD=DF.

If A, B, E are any three points of line AB, and we have
AB=n.CD, we shall also have AE=n. CF, and consequently (ex-
tending evidently to the case of AB, AE, DC incommensurable),
AB:CD=AE:CF. The ratio AB: CD is, therefore, independent
of AB, and completely determined by AC.

- We shall designate the value of this ratio AB:CD by the
capital letter (as X) corresponding to the small Italic (as x)
by which we represent the sect AC.

24. Whatever be v and v, (§ 23), V=X
For, one of the quantities x, ¥ is a multiple of the other
(e. g. » is a multiple of x) or it is not.
If y=n.x, take +=AC=CG=GH=ac., until we get AH=y.
Moreover, take CD || GK || HL.
We have (§ 23) X=AB:0D=CD:GK=GK:HL, and con-
sequently AB  (AB)®
4 HL™ L?ﬁ)
v
or Y=X"=X¥,
If x, y are multiples of 7, we shall have in accordance with
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the above, X=I" Y=I", and consequently
n v
Y=X"=X5,

This conclusion is easily extended to the case where x and v
are incommensurable,

If g=y—x, then Q=Y:X.

In the system 2 for every value x, we have X=rI.

In the system S, on the contrary, X>>1, and for any values
of AB and ABE there is a line || AB such that CDF=AB,
whence results AMBN 2 AMEP, though the first of these two
figures may be any multiple of the second; a singular result,
but evidently not showing any absurdity in the system S.

5. [n every rectilineal triangle, the circles with radii equal
to its sides are to each other as the sines of the opposite angles.

e Take , ABC=rt. ,, and AM -L
u 'Y BAC, and BN and CP || AM.
b We shall have CAB ... AMBN, and

|
consequently (since CB - BA), CB -
“ AMBN; therefore, CPBN -L AMBN.
' Suppose that the F of ray CP cuts the

straights BN, AM respectively in D and
£ b E, and the bandes CPBN, CPAM, BNAM
Fig. 17. along the L-lines ('D, CE, DE. Then
(§20) , CDE will be equal to the angle of NDC, NDE, and
hence=rt. /; we have in the same way / CED=/ CAB.
Now, (§21) in ACED formed by the L-lines, (supposing
always here the radius=1), we have
EC:D(C=1:sin DEC=1:sin CAB.
We have also (§21)
EC:DC=Q.EC:0.DC (in F)=0Q.AC:O.BC (§18).
Consequently we conclude

O.AC:O.BC=1:sin CAB,
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whence it follows that the theorem enunciated is established for
any triangle.

6. [u any spherical triangle, the sines of the sides are to
cach other as the sines of the angles opposite.

Take / ABC=rt. /, and CED _L to the
radius OA of the sphere. We shall have
CED -L. AOB, and (BOC being also -- to
BOA), CD -L OB. Now, in the triangles
CEO, CDO, we have (§25)
O-EC:0.0C:0.DC=sin COE:1:sin (OD

Fic. 18. =sin AC:1:sin BC. i

But we have also (§25) O.EC:(.D(==sin CDE:sin (ED.
Therefore, sin A(:sin BC=sin CDE:sin (CED. But (DE=
rt. £ =CBA, and CED=CAB. Consequently,

sin AC:sin BC=1:sin A.

From this follows the whole of spherical trigonometry, which
is thus established independently of Euclid’s Axiom X1.

2%. If AC and BD are - AB and we translate the / CADB
along the ray AB, we shall have, designating by CD the path
described by the point C,

CD: AB==sin #:sin 2.

1 M Take DE -l CA. In the
{ _E -~ = A0 triangles ADE, ADB, we have
o (§25)
J_Li 7 O.ED:O.AD:O.AB=
T N N . - sin #: 1:sin 2.
G . F In revolving BACD around AC,
Fic. 19. " the point B will describe (O.AB,

and the point D will describe O.ED.
Designate here by (9.CD the path of the line CD. " More-
over, let there be any polygon BFG . . . inscribed in O.AB.
Passing through all the sides BF, FG .. . . planes-L
(©-.AB we form thus a polygonal figure of the same number of
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sides in (9.CD, and we may demonstrate, as in § 23, that
CD:AB=DH:BF=HK:FG=. . . , and consequently
DH+HK+.. . BF+FG+. . .=CD:AB.
If we make each of the sides BF, FG . . . approach the
limit zero, we have
BF+FG+. . .=:0.AB and
DH+HK+. . .2-Q.ED. We have
therefore also (O.ED:().AB=CD:AB. Now, we already had
O-ED:(O.AB=sin #:sin». Consequently,
CD: AB=sin #:sin 2.

If AC goes away from BD to infinity, then the ratio CD: AB,
and consequently also the ratio sin z:sin z remains constant.
Now 2 -= rt. , (§1),and if DM | BN, z = z. Therefore,
CD:AB=1:sin 2.

We shall designate this path CD by CD | AB.

28. . If BN || AM. and £ ABN=/;BAM, and Ca point of

ray AM, then putting AC=x (§ 23) we shall have
X=sin #:sin .
A’ For, CD and AE bemng -L. BN, and BF L.
% z AWM, we shall have (as ing§ 27)
w" : O.BF :.CD=sin #:sin 7.
o  Now evidently BF=AE. Therefore
D O.EA : O.DC=sin «:sin 2.
But in the F-surfaces of AM and CM,
M N which cut AMBN along AB and CG, we
Fia. 20. have (§ 21)
O-EA:O.DC=AB: CG=X.

Therefore also

Qo

X =sin :sin 2.
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29. If £ BAM=rt. z/, and sect AB=y, and BN || AM, we
shall have in the system S,
Y =cotan ¥ .

For, ifwe suppose sect AB=
sect AC, and CP || AM (and
o so BN | (P and , (UBN=

CvH G Q /. BCP), and £ PCD=/ QCD:.
Fig. 21. then we can draw (§ 19) DS
- ray (!D so that DS || CP, and consequently (§ 1) DT || CQ.
Moreover, if BE l.ray DS, then (§ 7) DS | BN, conse-
quently (§ 6) BN | ES, and (since DT | CG) BQ| ET.
Therefore, (§ 1) /. EBN=; EBQ. Let BCF be an L-line of
BN, and FG, DH, CK, EL, L-lines of FT, DT, CQ, &c. We
shall have (§22) HG=DF=DK=HU("; therefore,

CG=20'H=2 7.

In the same way BG=2BL=2..

Now BC=BG—GU('; so y=z—=, whence (§24) Y=2Z:V.

Finally we have (§ 28)

Z=1:sin % x,
V=1:sin (rt. 7 —3 u).

Therefore, Y=cotan 3 .

30. It is easy to see (after (§ 25) that solution of the
M MY N problem of Plane Trigonometry, in the
system S, requires the expression of the
%33 circle in terms of the radius. Now, we
e

L2

S -~ are able to obtain this by the rectification
he\// - 4 ;  of the line L.

"/ | Let AB, CM, C'M’ be straights -

LA ’C f‘f::"‘::;_ig: ray AC,’ and B any point of ray ARB.

\D We shall have (§ 25)
! D sin #:sin 7=p: Oy,
Fig. 22. sin #':sin '=0p: Qy’;
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sin 7 sin 71 ,

Consequently, ~- Z.or="-".Qp.

sin v sin 7

Now, we have (§ 27) sin ©:sin #'=cos u#:cos «.

sin u sin 2’
" Therefore, —.Qv=">- —.QV-
' cosu Or= cos 2’ Q.
or Qy:Qr =tan #’:tan y=tan fv:tan @

Take now CN and C'N’ | AB, and CD, C'D’ L-lines -. AB.
We shall have then (§ 21)
Qv:Qy'=r:7, whence

7o =tan w:itan w'.

‘Make p increase from A to infinity; then z - 7 and @’ == :
whence results also 7:7=tan z:tan 2.
Designate by ¢ the constant ratio
ritan z (wdependent of r).
If we suppose v - o, then

T 3 and consequently

J -/ From §29, it follows that tan z=4% (Y—Y 1.
tan &

2y .
Therefore o,
Y..._. Y 1
‘ : .
or (§24) apIt
S 2
2
1. !
Now, we know that the limit of this expression, for
7
- 36 e Therefore,
YOS pat log T ‘
‘

nat. log I = /, and consequently
I=¢=2.7182818+,
a number which presents itself here in a remarkable manner.
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Designating henceforth by 7 the sect of which the I=e¢, we
shall have
r=1tan 2.

We have found elsewhere (§ 21) Qv=277.

Therefore, - ,
Qy=2xi tan s=7i (Y—Y !)=n7 [ y o2 ]

gi-—gi

Y (Y—Y! 24).
“nat.logY(Y Y1) (§24)

31. For the trigonometric solution of all right-angled recti-
lineal triangles (whence is easily deduced that of all rectilineal
triangles whatsoever), in the system S, three equations suffice.

Let ¢ be the hypothenuse, «, & the sides of the right angle,
and «, 3 the angles respectively opposite to 2 and 4. These
three equations shall be those which express relations.

1. Between a, ¢, «
II. Between «a, «, 3
111. Between a, 4, c. )

From these equations we shall deduce ,
afterward three others by elimination.

I. From §§ 25 and 30 we get

1:sin a=(C—C1): (A—A-1)=  Fia. 23.

“«

¢ ¢ &

=1 ° A N f] , an equation between ¢, a, and .
£ i— g1 e’l—»—evxj

II. From §27 we deduce (BM being || yn)
cos a:sin A=T1:sin u.
Now, we have (§ 29)
i:sin #=% (A + A~1); therefore cos #:sin F= % (A+A"1)=

% (@% ¥ a""jl‘ } , an equation between o, 3, and a.

III. Take ad' L 3ar; 8% and 17/ | aa’ (§ 27), and Foy
L a’. We will evidently have (as in § 27) :
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¥
(98]
[

AT
77 sin

=4(B+B 1),

=4(A+AT),

/(

¢ o__1 r a K l b b
cite i P leite ) (eite i)
an equation between a, b, and c.

If yuo=rt. /_, and we have 0 L «0, then we shall get
Qc¢: Qa=1:sin «, and
Ce:Q(d=30)=1:cos w.
Therefore, designating by (Qx?% for any value of x, the
product Qx.Qx, we shall evidently have
Qa4+ Qd*=Qc
Now, we have found (§ 27 and § 31, IT)
Qd=0b.5 (A+A"), Consequently

BT R GRS R b} . a)h
eie i) =*[eite 1) |ei-e i) + [ei—e

another relation between a, &, and ¢, the second member of
which may be easily put into a form symmetric or invariable.
Finally, from the equations

cos cos 3
sin f=3(A+A1), sin a=3(B+B '), we get (after II)
c [0 l
cot # cot =% (e‘_i‘}'e’ i),
an equation between u, 3, and c.

32. It still remains to show briefly the means of resolving
problems in the system S. After having expounded this in
regard to the most ordinary examples, we shall see finally what
this theory is able to give.
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I. Take AB aline in a plane, and y=/ (x) its equation in
rectangular coordinates. Designate by dz any increment of z,
‘ and by dx, dy, du the increments of x, of v,
and of the area #, corresponding to this in-
crement dz. Take BH || CF; express (§31)

H by means of v, and seek the Zimir of;i\;

dx 'y,
when dx tends toward the limit zero (which
Fia. 24. is always understood when one seeks such

limits.

We shall then know the limit of gJH and so tan HBG: and

consequently (since evidently HBC can be neither >, nor
<rt. £, and so is=rt. £ ), the fangens at B of the line BG
will be determined by means of y.
II. We can demonstrate that
az? .
BB
Thence we deduce the limit of ?j and from it we get, by
dx,
integration, the expression for z in terms of x.

Given any real curve, we can find its equation in the
system S.

For example, to find the equation of a line L. Let ray AM
be the axis of the line L; every straight drawn through A,
other than the straight AM, meeting L (§ 19), the random ray
CB, starting from a point of ray AM, will meet L.

Now, if BN is an axis, we have

‘X=1:sin CBN (§28),
Y==cotan ¥ CBN (§ 29), whence
we get Y=X-+1'X?—71, )

I.

r_x Im
¢i=e l+\’£i~—l,
which is the equation sought.

or
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[
(o8
(F%)

Hence we.get

dy . 2__
5= X (X*—1)
Now, %}E:I:sin CBN=X. Therefore
ax
dy ; -3
“V Lo 2
BH ( 1)
ay* . 2 9 oy 1
I+BH2f1 X2 (X I)) ,
dz* . .
42 . oxe. R |
BI® © (X —1) ,
1
1;{%1 . X.(X'—"—I)'”’ and
dz 5

7 = X2 (X?—1) ' whence,
integrating, we get (as in §30)
#=i(X?—1)¥=i cot CBN.
II1.  Evidently
dx . HFCBH.
dr dx

- If this quantity is not given in y, it is necessary to express it
in terms of y, and then we get « from it by integration.

c f Putting AB=p, AC=¢, CD=7, and CABD
EfTT =S, we might show (as in II) that
e ds = 7, a quantity equal to
dq
A ® B 4 41 whence, integrating,
e ol gring

[ A}]
s=3p1 |ei—e i) .

We might also obtain this result without integration.
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For example, if we establish the equation of the circle (after
§31, I1I), of the straight, (from §31, II), of a conic (from what
just precedes), we could express also the areas bounded by
these lines.

We know that a surface 7, || a plane figure p (at the distance
g) is to p in the ratio of the second powers of homologous
lines, that is to say in the ratio of

1 {f O ul®
Llli4e 1) 1.

It is easy to see, moreover, that the calculation of volume,
treated in the same manner, requires two integrations (the
differential itself being determinable only by integration).

It is necessary first of all to investigate the volume contained
between p and 7 and the aggregate of all the straights.l. p
and joining the boundaries of p and 7

We find for the volume of this solid (whether by means of
integration or otherwise)

L)
wpilei—e 0] 3pg.

The surfaces of bodies may also be calculated in the system
S, as well as the curvatures, the involutes, the evolutes of any
lines, etc.

As to curvature, in the system S, either it will be the curv-
ature of the line L itself, or we may determine it either by the
radius of a circle, or by the distance of a straight from the
curve | to this straight; and it is easy to make it evident, after
what precedes, that there is not, in a plane any uniform line
other than L-lines, circles, and the curves ||| to straights.

IV. For the circle we have (as in III) L-i—;.—afxg: Qx, whence

X
(§ 29), integrating, we get k
: { x x
OQx=n1* {glap g, 1

1
17
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V. Take #=CABDC the area comprised between an
L-line, AB=7, a || to that line, (D=w, and the M N
sects AC=BD=ux.

du x
We have g and (§24) y=re 3 whence
‘ ‘ . = c D
integrating =77 [1~~ ¢ TJ
If v increases to infinity, then, in the system S, a B
X . FiG. 26.

;i O, and consequently 7 - ri. Weshall

call this limit the size of MABN,

We may see in the same manner that, if p is a figure traced
on F, the space comprised between p and the aggregate of
axes drawn through the different points of the boundary of 2
is equal to % g 7.

Let 2« be the angle at the center of the
spherical calotte 2, and p a great circle,
and .« the arc FC corresponding to the
angle 2. We shall have (§25)

1:sin #=p:().BC, whence
QO-BC=p sin n. We have, besides,

] du FiG. 27.
x=P V. a’x=]->»-r-- St
27 27 -
dz
Moreover, © == (O.BC,
dx
2
dz 7 sin u, and, integrating,
du 27
ver sin # .
F=- o a8

Imagine the surface F on which is situated the circle 2
(passing through the middle F of the calotte). Draw through
AF and AC the hemi-planes FEM, CEM, perpendicular to F
and cutting F along FEG and CE; and consider the L-line CD
(drawn through C perpendicular to FEG), and the L-line CF.
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We shall have (§20) CEF=z#, and (§ 21)

ffz,’:‘,’fq_ﬂﬂ.f‘, whence z==FD . p.
V4 27
Now (§21) p==.FDG; therefore
#=z.FD.FDG. But (§21)
FD.FDG=FC.F(; consequently
z=n.FC.FC=0(.FC, in F.
Now let BJ=CJ=r; we shall have
(§ 30) 2r=i(Y—Y 1), whence, (§21)
Oz27(in F)=n2(Y-Y 1)
We also have (/1)
O2zv=r(Y*—2+Y ?).
Therefore, ®2r (in F)=@2v, and con-
sequently the surface z of the segment of a Fic. 28.
sphere is equal to the surface of the cirele described with the
chord fc as radius.

Therefore the whole sphere has for surface
©®-.FG=FDGp="2"
and the surfaces of spheres are to each other as the second
powers of their greatl cireles.
VII. We find in like manner that, in the system S, the
volume of the sphere of radius x is equal to

TR (X2—=X ) —2mitv.

The surface generated by the revolution of ¢« _
the line CD around AB is equal to EM
bip(Q-Q ), :
and the solid generated by CABDC is equal to
wp(Q—Q )% A F B
We suppose, for the sake of brevity, the FIG.'29.

method by which one may obtain without integration all the
results reached from IV thus far.
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We can demonstrate that the lmit of every expression con-
taining the letter ¢ (and consequently founded on the hypothesis
that a magnitude 7 exists), when i iucreases to infinity, gives
the corvesponding expression in the system Y (and consequently
under the hypothesis that a magnitude / does not exist), pro-
vided that we do not meet identical equations.

But we must be very careful not to get the idea that the
system itself may be changed at will (for it is entirely de-
termined in itself and by itself); it is only #ke /ypothesis which
may vary, and which we may change successively, so far as we
are not conducted to an absurdity. In supposing therefore
that, in such an expression, the letter 7, in case the system S is
that of reality, designates the unique quantity of which the I
has ¢ for its value, if we come to recognize that it is the system
' which is really actual, we conceive that the limit in question
is to be taken in place of the primitive expression. Then it is
evident that with this understanding, @/l the expressions
founded on the hypothesis of the reality of the system S will be
true absolutely, even when we ave completely ignorant whether or
not the system X' is the system of reality.

So, for example, from the expression obtained in §30 we
easily get (either by means of differentiation or otherwise) the
known value in the system 2

Qw=27x.
From I (§31) we conclude, by suitable transformations,
1:8in o= a;
from IT we get
oS ” _1, and consequently
sin [3
v+ 3=1.

The first equation of III becomes identical, and so it is true
in the system 2, although it there determines nothing. From
the second we conclude

c=a*+ 5.
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These are the known fundamental equat:om of plane trigo-
nometry in the system 2.

Moreover, we find (after §32) in the system 2 for the area
and the volume in III the same value pg.

We have, from IV, _

GOr=mx

According to VII, the globe of radius v is

=r$mx®, etc,

The theorems enunciated at the end of VI are evidently
true without conditions.

33. It still remains to set forth (as we promised in §32)
what is the end of this theory.

I. Is it the system X or the system S which exists in
reality?

That is what we cannot decide.

II. All the results deduced from the falsity of Axiom X/
(always taking these words in the sense of §32) are absolutely
Zrue, and in this sense, depend on no hypothesis.

Thel;e is therefore @ plane trigonometry a priori, ‘in which the
sysz‘mz ‘alene really vemains unknozon; and where we lack only
the abdsolute magnitudes in the expressions, but where a single
known case would evidently fix the whole system. On the
contrary, spherical trigonometry is established absolutely
in §26.

We have, on the surface F, a geometry wholly analogous to
the plane geometry of the system X\

III. If it were established that it is the system Y which
exists, nothing more would remain to be known on this point.

But if it were established that the system Y does not exist,
then (§31), being given, for example, in a concrete manner,
the sides w, ¥, and the rectilineal angle which they include, it
is clear that it would be impossible in itself and by itself to
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solve absolutely the triangle, that is to say, to determine
@ priori the other angles and the ratios of the third side to the
two given sides, unless one could determine the quantities
X, Y. Forthat, it would be necessary to have in concrete form
a certain sect @ of which the A was known. Then 7/ would be 24
natural unit for length (as e is the base of natural logarithms).

If the existence of this quantity 7 is supposed to be known,
we see how one could construct it, at least with a high degree
of approximation, for practical use.

IV. In the sense explained (I and II), we may evidently
apply everywhere the modern analytic method (so useful when
one employs it within suitable limits).

V. Finally, the reader will not be sorry to see that in case
it is the system S, and not the system 2, which really exists,
we can construct a rectilineal figure equivalent to a circle.

34. Through D we may draw DM|AN in the following

manner. From the point D drop b

. C M
DB .. AN; at any point A of the z
straight AB erect AC .- AN (in the °
plane DBA) and let fall DC.L AC. ~ -7 ]\ _
We will have (§27) O.CD:O.AB= * st N
I:sin #, provided that DM|BN. Now - Fia. 30.

sin 2 is not >1; therefore AB is not > DC. Therefore a
quadrant described from the center A in BAC, with a, radius
=DC, will have a point B on () in common with ray BD. In
the first case, we have evidently z=rt. /. In the second case
we shall have (§z5)
O-AO(=CD):(.AB=1:sin AOB

and consequently z=AO0B.

If therefore we take z==AOB, then DM will be || BN.

35. In the system S we may, as follows, draw a straight -
to one of the sides of an acute angle and at the same time || to
the other side.
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Take AM .l. BC, and suppose » J;IRP AN
AB=AC sufficiently small (§19) ///
to make, when we draw BN||AM LI )
(§ 34) ABN > the given angle. BW e
Draw also CP|AM (§34), and Fic. 31.

take NBG and PCB each equal to the given angle. Rays BG
and CD will meet; because if ray BG (falling by construction
within NBC) cuts ray CP in E, we shall have (since
/. CBN=,BCP) ,EBC,ECB, and so EC<EB. Take
EF=EC, EFR=ECD, and FS|EP, then FS will fall within
the angle BFR. Because, since BN|CP, whence BN|EP, and
BN|FS, we shall have (§14)
/. FBN+ s BFS<st. 4 =FBN -+ BFR.

Therefore, BFS< BFR. Consequently, ray FR cuts ray
EP, and so ray (D also cuts ray EG somewhere in D. Take
now DG=DC and DGF=DCP=GBN. We shall have (since
/. GCD=/ CGD) s, GBN=/ BGT and £ GCP=CGT. Let K
(§19) be the point where the line L of BN meets the ray BG
and KL the axis of this.L-line. We shall have ; KBN=
/_BKL, and so BKL=BGT=DCP. :

Moreover, CKL=KCP. Therefore, evidently K falls on G,
and GT||BN. If now we erect HO -L. BG at its mid point, we
shall have constructed HO || BN.

36. Having given the ray CP and o) R
the plane MAB, take CB -L the plane w N
MAB, BN (in hemi-plane BCP) .i. BC, \
and CQJIBN (§34). The meeting of
ray CP (if this ray falls within BCQ)
with ray BN (in the plane CBN), and
consequently with the plane MAB, may A
be determined, And if we are given ' Fic. 320
the two planes PCQ, MAB, and we have CB.L to plane
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MARB, CR -L plane PCQ; and (in plane BCR), BN -L BC, CS
-LLCR, BN will fall in plane MAB, and (S in plane PCQ; and when
we have found the intersection of the straight BN with the
straight CS (if there is one), the perpendicular drawn through
this intersection, in PCQ, to the straight CS will evidently be
the tntersection of plane MAB and plane PCQ.

3%7. On the straight AM| BN, there is a point A, such that
/. BAM=, ABN.

_ QTM {
If (according to §34) we construct
outside of the plane NBM, GT | BN,
and make BG -L. GT, GC=GB, and o .

CP||GT; and so draw the hemi-plane B8
TGD that it makes with hemi-plane Y
TGB an angle equal to that which FiG. 33.
hemi-plane PCA makes with PCB.

Seek then (§36) the intersection DQ of hemi-plane TGD
with hemi-plane NBD, and finally draw BA -L. DQ.

We shall have, by reason of the similtude of the triangles of
L lines traced on the F of BN (§21), DB=DA, and zBAM
=/ ABN.

We readily conclude from this, that, L-lines being given by
their extremities alone, we may obtain in this manner, in F, a
fourth proportional, or a mean proportional, and execute,
without recourse to Axiom XI, all the geometric constructions
made on the plane in the system 2. Thus, for example, we can
geometrically divide a perigon into any special number of equal
parts, if we know how to make this special partition in the
system Y. _ ,

38. If we construct (§37) for example,
NBQ=} rt. ¢, and draw (§35), in the
system S, AM -l ray BQ and || BN; if we
determine, again (§37), L BIM=/IBN, we
shall have, putting IA=x (§28), X=
1:sin & rt. £ =2, and x will be constructed
geometrically.

D
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We may calculate NBQ so that IA differs from 7 as little as

we choose, which happens for sin NBQ==3.

39. If ina plane PQ and ST are || to the straight MN
(§27), and the perpendiculars AB, CD are equal, we shall
evidently have ADEC Z ABEA; consequently the angles
(may be mixtilinear) ECP, EAT would H_K F C
coincide, and we have EC=EA. If, P(Y ;/ Q
besides CF=AG, then AACF Z \\b N
ACAG, and each of them is the half of INCE/ P
the guadrilateral FAGC. s — T

If FAGC, HAGK are two of these Fia. 35.
quadrilaterals, of base AG, contained between PQ) and ST, we
may demonstrate their equivalence (as in Euclid), as also the
equivalence of the triangles AGC, AGH, on a common base
AG, and having their vertices on PQ. Morcover, we have
ACF=CAG, GCQ=('GA, and ACF+ACG+GCQ==st. ,
(§32); consequently we also have CAG-+ACG+ CGA=st. /2.
Therefore, in every triangle ACG of this sort, the sum of the
angles=st. /.  Whether the straight AG coincides with AG
(1. MN), or not, the equivalence of the triangles AGC, AGH,
as well in relation to their areas as in relation to the sum of
their angles, is evident.

40. EBguivalent triangles ABC, ABD,
(which we will henceforth suppose recti-
lineal), Zaving one side equal, have the
snms. of their angles equal.

Draw MN through the mid points of
AC and BC, and take (through the
point C) PQ . MN. The point D will
fall on PQ. ‘

For, if ray BD cuts the straight MN at the point E, and
and consequently PQ at F making EF=EB, we shall have
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AABC=AABF, and so also AABD=AABF, whence it follows
that D falls at F.

But if ray BD does not cut the straight MN, let ! be the
point where the perpendicular from the middle of AB meets
PQ, and let GS=HT, so that the straight ST meets the ray
BD prolonged in a certain point K (which is possible as we
have seen in §4). Take also SR=SA, RO || ST, and O the
intersection of ray BK with RO. We would then have
AABR=AABO (§39), and consequently NAABC>AABD,
which would be contrary to the hypothesis.

41. Egquivalent triangles ABC, DEF have the sums of their
angles equal.

Draw .MN through the mid

points of AC and BC, and PQ e
through the mid points of DF £ Q
and FE; and take RS || MN,

TO || PQ. D E

The perpendicular AG to RS Fie. 37.
will equal the perpendicular DH to TO, or will differ from it;
for example, DH will be the greater.

In each of these two cases, the (O.DF, described from
center A, will have with line-ray GS a common point K, and
then (§39) we shall have AABK=AABC=ADEF. Now the
AABK (§40) has the same angle-sum as ADEF, and (§39)
the same angle-sum as AABC. Therefore the triangles ABC,
DEF have each the same angle-sum.

In the system S the reverse of this theorem is true.

Take ABC, DEF two triangles having the same angle-sum,
and ABAL=ADEF. These latter triangles will have, from
what precedes, the same angle-sum, and consequently so will
AABC and AABL.

From this follows evidently
' BCL+BLC+ CBL=st. /..
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Now (§31) the angle-sum of every triangle, in the system S,
is < st /.

Therefore L. falls necessarily on C.

42. T.et x be the supplement of the angle-sum of the
AABC, and = the supplement of the angle sum of ADEF. We
shall have AAB(: ADEF=u:7.

Let p be the area of each of the equal
triangles ACG, GCH, H(B, DFK, c
KFE, and let AABC=m.p, and ADEF
=n.p. Designate by s the angle-sum
of any one of the triangles equivalent o5 ® % A G H B
to p.  We shall evidently have . FiG. 38.

st. o —u=m.s— (m—1)st. ;/ =st. /. —wm(st. £ —5);
and z=m(st. £ -—s). In the same way v==n(st. /- $).

Therefore AAB(: ADEF=wz: n=u:2.

The demonstration is easily extended to the case of the in-
commensurability of the triangles ABC, DEF.

We may demonstrate in the same way that spherical triangles
are as their spherical excesses.

If two of the angles of the spherical A are right angles, the
third z will be the cxcess in question.  Now, designating by 2 a
great circle, this A is evidently '

— 2 7 (32, V1),
22w
Consequently, any triangle of which the excess is z, is
_
472
43. Thus, in the system S, the area of a rectilineal A is

expressed by means of the sum of its angles.
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<

If AB increases to infinity, then (§42) u M N
the relation AABC:rt. , —u—v will be
constant. Now, AABC -=-BACN(§32,V)
and rt. y —u—v = 2z (§1).

Therefore, BACN: z=

AABC: (rt.  —u—v)=BACN": 7.

Moreover, we evidently have (§30) = ¢

BDCN:BD'C'N'==y:#=tan z:tan 2.
Now, for y"-=- o, we have

E.I?__IE:NI I- and also tan & I ¢
BA'CN 7 P
Consequently,

BDCN:BACN==tan z:z.
But we have found (§32)
‘ BDCN=r.7=2" tan 2.
Therefore,
BACN=z.7%
Designating henceforth, for brevity, every triangle of which
the supplement of the angle-sum is z by A, we will thus have
A=z.2%
Hence we readily conclude that,
if OR|AM and RO|AB, the area /

contained between the straights

OR, ST, BC (which is evidently ° |
the absolute limit of the area of B A c
rectilineal triangles increasing in- F16. 40.

definitely, or the limit of A for z -= st. 2. ), will be equal to
m*=@7 (in F). :

' Designating this limit by [J, we will also have (§30)
z=tan?z.[ =@ (in F) (§21)=@s (§32, VI), representing
the chord CD by s.

- If now, by means of a perpendicular erected at the mid point
of the given radius s of the circle in a plane (or of the radius of
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form L of the circle in F), we construct (§34) DB|CN and
.. CDB=/DCN; by dropping CA - DB, and erecting
CM .l CA, we shall get z; whence (§37), f N ‘
taking arbitrarily a radius of form L for B
unity, we shall be able to determine geo-
metrically tan’z, by means of two uniform z
lines of the same curvature (which, their
extremities alone being given and their axes
constructed, may evidently be treated as
straights in seeking their common measure,
and are in this respect the equivalent of
straights). Fie. 41.

We can, moreover, construct as follows a quadrilateral, for
example a regular quadrilateral, of area=[].

A
C’X_
e D

Take ABC=rt. ,, BAC=} rt. 1, ACB= C
+rt. 4, and BC=ux. x

We can express X (§31, II) by simple A
square roots, and construct it (§37%).

Knowing X, we can determine x (§38 or also FiG. 42.
§§29 and 35). The octuple of AABC is evidently =[], and
thus @ plane circle is geometrically squared by means of a recti-
linear figure and of uniform lines of the same species (that is
to say of lines equivalent to straights as to their comparison to
each other). :

A cirele of the surface Fis planified in the same manner.

Thaus cither the Axiom X1 of Euclid is true ov we have the
geometric quadrature of the circle, though nothing thus far
decides which of the two propositions is real.

- Whenever tan?z is either a whole number, or a rational
fraction, of which the denominator (after reduction to the
- simplest form) is either a prime number of the form 2™--1 (of
whiﬁh 2=2%}1 is a particular case), or a product of prime
- numbers of this form, of which each (with the exception of 2,
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which alone may enter any number of times) enters only once
as factor, we can, by the theory of polygons given by Gauss
(and for such values alone), construct a rectilineal figure
=tan’z=()s. Because the division of [} (the theorem of §42
extending easily to any polygons) requires evidently the par-
tition of a st. £, which (as we can demonstrate) is possible
geometrically only under the preceding condition.

In all such cases, what precedes conducts easily to the
desired end; and every rectilineal figure can be transformed
geometrically into a regular polygon of 7 sides, if # is of the
form indicated by Gauss. '

It still remains, for the entire completion of our researches, to
demonstrate the impossibility of deciding (without having
recourse to some hypothesis) whether it is the system I, or
some one of the systems S (and which one) which really
exists. This we reserve for a more favorable occasion.
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APPENDIX I

REMARKS ON THE PRECEDING MEMOIR, BY WOLFGANG BOLYAI
[From Vol. II of Tentamen, p. 380, et seq.]

I may be permitted to add here certain remarks appertaining
to the author of the Appendix, who may pardon me if I do not
always well express his thought.

The formulas of spherical trigonometry (demonstrated in the
preceding memoir independently of Euclid’s Axiom XI) coin-
cide with the formulas of plane trigonometry, when we consider
(to use a provisional method of speaking) the sides of a
spherical triangle as reals, those of a rectilineal triangle as
tmaginaries; so that, when it is a question of trigonometric
formulas, we may regard the plane as an imaginary sphere,
taking for real sphere that in which sin rt. ;, =1.

We demonstrate (§ 30) that there is a certain quantity 7 (in
case of the non-existence of Euclid’s axiom), such that the cor
responding quantity / is equal to the base ¢ of natural
logarithms. 1In this case, we establish also (§31) the formulas
of plane trigonometry, and in such manner (§32, VII) that the
formulas are still true for the case of the reality of the axiom in
question, taking the limit of the values for 7 .= o0. Thus the

Euchdean system is_in a certain way the limit of the anti-
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Take, 1n case of the existence of 7, the unit=¢, and extend
the definitions of sine and of cosine to imaginary arcs, so that,
2 designating an arc whether real or imaginary, the expression

PJZT ~PA-1
e +e

, is to be always called

the cosine of p, and the expression
PJIT -PuTd
£ % the sineof p.
T =y
We shall have for g real

S B B SR S N C e e
i £ —e . —
s = =~ =sin(—q1 )

=—sin(g1 — 1), and in like manner
q -q =41 T a1 J=1
e te ¢ -+¢ :

T2 T o =cos(—g1 — p)=cos(g1 —1)

admitting that, in the imaginary circle ‘as in the real circle, the
sines of two arcs equal but of contrary sign are equal and of
opposite sign, and that the cosines of two arcs equal but of
opposite sign are equal and of the same sign.

We demonsttate, in §25, absolutely, that is to say inde-
pendently of the axiom in question, that, in every rectilineal
triangle the sines of the angles are to cach other as the circles
which have for radii the sides opposite to these angles.

We demonstrate, besides, for the case of the existence of the

e . . . o ¥
quantity 7, that the circle of radius y is equal to 7z [ PR ] ,

which, for /=1, becomes
7(e¥—e77).

‘onsequently (§31), in a right-angled rectilineal triangle of
which the sides of the right angle are 2 and 4, and the hy-
pothenuse ¢, and of which the angles opposite to the sides «, 4,
c are ¢, 3, rt. £, we have (for /=1).
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From 1T,
1:sin a=n(%—e %) m(e*—e7");
and consequently

E,(';___g'*(‘» eil_g—il
Iisin g== ol o

2 e =1
=-sin (¢ —y):—sin(a; —p)=sin(cy —p):sin(ar —1);
From II,
cos uisin g==cos (ay —1)'1;
From III,

cos (¢ —1)=cos(ay —1).cos(by —1)-

These formulas, as also all the formulas of plane trigo-
nometry deducible from them, coincide completely with the
formulas of spherical trigonometry, to this extent that if, for
example, the sides and the angles of a night-angled rectilineal
triangle are designated by the same letters as those of a right-
angled spherical triangle, the sides of the rectilineal triangle are
to be divided by ;1 to obtain the formulas relative to the
spherical triangle.

So we get, for a spherical triangle,

by I, I:sin u==sin c:sin «;
by II, ' 1:cos a==sin 1: cos «;
by III, cos c=cos a cos b.

As the reader may be stopped by the omission of a demon-
stration (in §32 at end) it will not be useless to show, for
example, how from the .equation

ot (]
fi»{—g"' iy leite i gite i
we deduce the formula
A=a+ B,
or the theorem of Pythagoras for the Euclidean system.
It is probably thus that the author arrived at it, and the other
consequences follow in a similar manner.
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We have, by the known formula,

ok kEoOER k
ST et 03772*”%2?424% o
k - b2 3 e 4
e i=1— ]”. _ﬂz,,fi_,_:,jL w-/éq.v.',,b_ .. .., and consequently
{2 2.3 2.3.4.4
k k .2 4 ' 2
o1 e’”nazk.]i+._1" 2_+13;221,
AR A ¢
2
designating by * the sum of all the terms which follow . and

%

we have # == o, when 7 - oo. For all the terms which follow
w3

1,2

on being divided by %, (that is the factor 7* being taken out

2,
o
of the denominator), will have for first term ~.; and as the

3.4

_ R .
ratio of a term to the preceding is throughout < =) the sum is

. s . Vi .

less than it would be, if this ratio were =—-f,— that is to say less
%

than

7t ( B Y

ga (172 J=. (;3: 2

a quantity which evidently == o when 7 = oo,

From the equation

© ¢ ( ath _agb a—b ,,?E;‘E_']
elit e i:i e 1 +e 4, i 4o 1
there results (calling w, », A quantities analogous to )

Y 2, 5)2+7
Ty [ O )
2
9 2 2 Z__,_ —w
52.._‘2 + zab+b -I-tl 245““5 Z’“;LA; - -, a quantity

2
which = a?+ 8%



252 HALSTED—BOLYAI: SCIENCE OF ABSOLUTE SPACE.

APPENDIX II.

SOME POINTS IN JOHN BOLYAI'S APPENDIX COMPARED WITH
LLOBATSCHEWSKY, BY WOLFGANG BOLYAI

[From Kurzer Grundriss, p. 82.]

Lobatschewsky and the author of the Appendix each con-
sider two points .\, B, of the sphere-limit, and the corres-
ponding axes ray AM, ray BN (§23). Moy p

They demonstrate that, if «, 3, y designate H
the arcs of the circle limit AB, CD, HL,
separated b)} segments of the axis A(=I1,

AH=x, we have c
o fa)¥
YR A
Lobatschewsky represents the value of Fi1c. 43.

fl»by ¢, ¢ having some value >1I, dependent on the unit for

length that we have chosen, and able to be supposed equal to
the Naperian base.

The author of the Appendiz is led directly to introduce the
base of natural logarithms.

oL
If we put§=6, and 7y, 7 are arcs situated at the distances
i

¥, 7 from «, we shall have

“ n_ ; L
-=0"=Y, -, =0'=I, whence Y=I T
7 7
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He demonstrates afterward (§29) that, if # is the angle
which a straight line makes with the perpendicular to its
parallel, we have

Y=cot % u.

Therefore, if we put z=_ —u, we have

Vetan(z 4 L) tan z +tandu
: I—tan 2 taniz,
whence we get, having regard to the value of tan Ju=Y ",
(¥ ¥
tan z=3(Y—Y )=} [1 = } (§30)-
If now v is the semi-chord of the arc of circle-limit 27, we

”
§ = _
prove (§30) that,tan ,—constant

Representing this constant by 7 and making v tend toward
zero, we have

27
. .+ 1, whence
2y
2y
) I0 -1
2y =2 tan & -1 -
It

29
or putting - ZJ =k, [=¢,

v
Bli= M—1 = k(14 w),
o being infinitesimal at the same time as 4, Therefore, for the
limit, 1==/ and consequently I=e.
The circle traced on the sphere-limit with the arc » of the
curve-limit for radius, has for length 277. Therefore,
Qy=z27r=27 7 tan z=mi(Y—Y ).
In the rectilineal A where «, 7 designate the angles opposite
the sides a, &, we have (§25)
sin «:sin 3=Qa: Qb=ri(A—A~"):7i(B—B™)
=sin (ap’ =1):sin(é1 —1)-
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Thus in plane trigonometry as in spherical trigonometry, the
sines of the angles are to each other as the sines of the
opposite sides, only that on the sphere the sides are reals, and
in the plane we must consider them as imaginaries, just as if
the plane were an imaginary sphere.

We may arrive at this proposition without a preceding de-
termination of the value of I.

»
If we designate the constant oz by ¢, we shall have, as

before
Qy=rg(Y—Y"),
whence we deduce the same proportion as above, taking for /
the distance for which the ratio I is equal to e.
If axiom X7 is not true, there exists a determinate 7, which
must be substituted in the formulas.
If, on the contrary, this axiom is true, we must make in the

: ° .
formulas 7/ = «. Because, in this case, the quantity —==Y is
i

always=r1, the sphere-limit being a plane, and the axes being
parallel in Euclid’s sense.

The exponent £ must therefore be zero, and consequently

7= oo,
It'is easy to see that Bolyai's formulas of plane trigonometry
are in accord with those of Lobatschewsky.
Take for example the formula of §37,
tan //(2)=sin B tan //(p),
a being the hypothenuse of a right-angled triangle, p one side
of the right angle, and B the angle opposite to this side.

Bolyai’s formula of §31, I, gives
I:sin B=(A—A=1): (P—P).
Now, putting for brevity, }//(#)=#, we have tan 2p":tan 24’
=(cot &'—tan a'): (cot p'—tan p')=(A—A1): (P—P)

=1:sin B.
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APPENDIX IIIL.

LIGHT FROM NON-EUCLIDEAN SPACES ON THE TEACHING OF

ELEMENTARY GEOMETRY.

By G. B. HALSTED.

The preface to my Elements of Geometry, 1883, says “that
around the word ‘distance’ centers the most abstruse advance
in pure science and philosophy.”

Recently R. A. Roberts, in his “Modern Mathematics,’
as one of the two main roots from which modern mathematical

“thought springs, the recognition of the fact that angles and
distances in the Euclidean experiential geometry depend
upon a certain absolute curve of the second order.

As foreshadowed by Bolyai and Riemann, founded by
Cayley, extended and interpreted for hyperbolic, parabolic,
elliptic spaces by Klein, and now recast and applied to
mechanics by Sir Robert Ball, this projective metrics may in
truth be looked upon as the very soul and characteristic of
what is highest and most peculiarly modern in all the be-
wildering range of mathematical achievement.

It permeates like a vital essence, and for questions of
method, of teaching, of exposition it is a final criterion.
Nearly all mathematicians have already fallen into rank as
holding that number is wholly a creation of the human intellect,
while on the contrary geometry has an empirical element. of
a number of possible geometries we cannot say a priori which

E]

gives
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shall be that of our actual space, the space in which we move.
Of course an advance so important, not only for mathematics
but for philosophy, has had some metaphysical opponents, and
as long ago as 1878 I mentioned in my Bibligraphy of Hyper-
Space and Non-Euclidean Geometry (American Journal of
Mathematics Vol. I, 1878, Vol. II, 1879) one of these,
Schmitz--Dumont, as a sad paradoxer, and another, J. (.
Becker, both of whom would ere this have shared the oblivion
of still more antiquated fighters against the light, but that Dr.
Schotten, praiseworthy for the very attempt at a comparative
planimetry, happens to be himself a believer in the a priori
founding of geometry, while his American reviewer, Mr. Ziwet,
happens to confuse what would be good in a book written for
the very necessary preparatory or propaedentric courses in in-
tuitive geometry, with what would be good in a treatise pro-
fessing to deduce Euclidean geometry from only the necessary
assumptions.

He says, *we find that some of the best German text books
do not try at all to define what is space, or what is a point, or
even what is a straight line”” Do any German geometries
define space? I never remember to have met oOne.

In experience, what comes first is a bounded surface, with
its boundaries, lines, and their boundaries, points. Are the
points whose definitions are omitted anything different or better?

Dr. Schotten regards the two ideas *“direction” and’
“distance’ as intuitively given in the mind and as so simple as
to not require definition.

As to what Webster’s Dictionary says of the meaning of the
English word “direction”, Professor Cajori has honored me
by a quotation on page 383 of his admirable History of
Mathematics in the United States, and only today I saw
mention of an accident caused while two jockeys were speeding
around a track in opposite directions, and also chanced on
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page 87 of Richardson’s Euclid, 1891, to read “The sides of
the figure must be produced in the same direction of rota-
tion; . . . going round the figure always in the same direction.”

No wonder that when Mr. Ziwet had written: “he therefore
bases the definition of the straight line on these two ideas,” he
stops, modifies, and rubs that out as follows, “or rather recom-
mends to elucidate the intuitive idea of the straight line
possessed by any well-balanced mind by means of the still
simpler ideas of direction” [in a circle] “and distance” [on a
curve]. If this is meant for an introductory geometry-for-
beginners, all well and good. Elucidate any intuition pos-
sessed by the well-balanced baby-mind by anything still
simpler which you may happen to think will elucidate it.

But when we come to geometry as a science, as foundation
for work like that of (‘ayley and Ball, I think with Professor
Chrystal: “It is essential to be careful with our definition of
a straight line, for it will be found that virtually the properties
of the straighé line determine the nature of space. ,

Our definition shall be that two points /% general determine a
straight line, or that in general a straight line cannot be made
to pass through #hree given points.”

We presume that Mr. Ziwet glories in that unfortunate ex-
pression “a straight line is the shortest distance between two
points,” still occurring in Wentworth (New Plane Geometry,
page 33,) even after he has said, page 5, “the length of the
straight line is called the distance between two points.” If
the length of the one straight line between two points is the
distance between those points how can the straight line itself
be the shortest distance. If there is only one distance, it is the
longest as much as the shortest distance, and if it is the lengh
of this shorto-longest distance which is the distance then it is
not the straight line itself which is the longo-shortest distance.
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But Wentworth also says “Of all lines joining two points the
shortest is the straight line.”

This general comparison involves the measurement of curves,
which involves the theory of limits, to say nothing of ratio. The
very ascription of length to a curve involves the idea of a limit.
And then to introduce this general axiom only to prove a very
special case of itself, that two sides of a triangle are together
greater than the third, is surely bad logic, bad pedagogy, bad
mathematics.

This latter theorem, according to the first of Pascal's rules
for demonstrations, should not be proved at all, since every
dog knows it. Well and good in our geometry-for-beginners,
to which alone Pascal’s rules apply; but to this objection, as old
as the sophists, Simson long ago answered for the science of
geometry, that the number of assumptions ought not to be
increased without necessity, or as Dedekind has it: “Was
bezveishar ist, soll in der Wissenschaft nicht ohne Betweis
geglaubt werden.”

But Mr. Ziwet could correct one of his misapprehensions by
looking into Wentworth’s book, namely the mistaken idea that
American “text books begin with several pages of definitions
to be committed to memory, followed by a page of axioms again
to be commilted to memory.”” -Wentworth carefully reproduces,
whenever he uses them, preceding definitions, axioms, theorems.

It is worth notice that the mistake made in our Century
Dictionary, the confusion of hyperbolic with elliptic geometry,
is made also on page 186 of Rebiere’s enjoyable “Mathéma-
tiques et Mathématiciens,” 1889, where he says: “De la des
geometries non-euclidiennes ou la somme des angles d'un
triangle n'est plus égale a deux droits: dans celle de Rieman,
elle est plus petite que deux droit et dans celle de Lobat- -
schewski, elle est plus grande.” Note also that, Frenchman-
like, both the proper names are here mis-spelled. May we not
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fear that here also is a teacher of mathematics who never has
read Lobatschewsky’s immortal Essay on Parallelss Contrast
a distinguished Englishman, Professor Levett, who says: “It
is many years since I first made acquaintance with this great
work, and I am delighted to see that the good cause of sound
geometrical learning has been advanced by the appearance of
an English translation. I believe that I am one of the very
few schoolmasters who have read the essay with pupils. King
Edward’s school boys are brought up in the true faith as to the
sum of the angles of a triangle.”

The brilliant American, Professor W. B Smith, (Ph. D,
Goettingen) has just written: “Nothing could be more -
unfortunate than the attempt to lay the notion of Direction at
- the bottom of Geometry.”

Was it not this notion which led so good a mathematician as
John Casey to give as a demonstration of a triangle’s angle-sum
the procedure called “a practical demonstration” on page 87
of Richardson’s Euclid, and there described as “laying a
‘straight edge’ along one of the sides of the figure, and then
turning it round so as to coincide with each side in turn.”

This assumes that a straight line may be translated without
rotation, which assumption readily comes to view when you try
the procedure in two-dimensional double-elliptic geometry, our
familiar two-dimensional spherics. It is of the greatest
importance for every teacher to know and connect the com-
monest forms of assumption equivalent to Euclid’s Axiom XI.
If in a plane two straight lines perpendicular to a third can
never meet, arc there others, not both perpendicular to any
third, which can never meet? Euclid's Axiom XI is the
assumption MNo. = Playfair's answers #o more simply, But the
very same answer is given by the common assumption of our
geometries, usually unnoticed, that a circle may be passed
through any three non-collinear points.
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This equivalence was first shown by Bolyai, who looks upon
this as the simplest form of the assumption. Lobatschewsky’s
form is, the existence of any finite triangle whose angle-sum is
a straight angle; or the existence of a plane rectangle; or that,
in triangles, the angle-sum is constant.

One of Legendre’s forms was that through every point
within an angle a straight line may be drawn which cuts
both arms.

But Legendre never saw through this matter because he had
not, as we have, the eyes of Bolyai and Lobatschewsky to see
with. The same lack of their eyes has caused the author of
the charming book “Euclid and His Modern Rivals,” to give
us one more equivalent form: “In any circle, the inscribed
equilateral tetragon is greater than any one of the segments
which lie outside it,” (A New Theory of Parallels by C. L.
Dodgson, 3d. Ed., 18g0).



NOTE ON THE TRANSITION CURVE.

By Pror. W. H. EcHoLs, UNIVERSITY OF VIRGINIA.

L

In Scientie Baccalaureus, Vol. 1., No. 1, in the article The
Railway Transition Curve, TaBLE I, is altogether wrong. In
correcting this error, I take advantage of the opportunity to
present anew the reduction of the formulae there given, to
present a further development of the system of Transition
Curves and to call the attention of any one interested in this
subject to a most interesting and highly valuable article in
No. 5;"The Technograph of the University of Illinois by Pro-
fessor Talbot.

Prof. Talbot has developed the Transition Spiral, as defined
p. 17, No. 1, in this journal, while I have developed the
“Transition Curve”, using this name to mean the “Taper
Curve” as defined by Prof. Talbot.

In my article of March, 1890, referred to above, I defined
the Transition Curve as follows: “A Transition Curve is one
whose curvature increases per unit of arc in arithmetical pro-
gression, or whose change of curvature per unit arc is
constant.”

Using the same notation as there used, let R and D be the
radius and degree of the main curve, united to the tangent by
a series of arcs of 71, . . . 7nand central angles @i, . . . dn re-
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spectively. Then we have for the tangent distance of the
curve,
=(R+p)tan 41 +g.

When p and ¢ are the distances of the point of contact of
the main curve with a tangent parallel to the initial tangent,
measured from the initial tangent and from the P. C. along the
initial tangent respectively.

From the figure in No. 1, we have,

i' (m—mn)sin dh,
+(r—ry)sin(di+ds)

7=y«
| +(m—R)sin(dr+ . . . dy).
Putting ME=2T=R= L . . =T,
and di=Ydv={dy= . . . =1d,.
We have,
sin o
+ % sin 34,
-1 sin 64,
q:’:]jf’]‘ -+
————sin Y —1)nd
: é}z(n-—l)sm*(” Ynd,
1 R
i I i L /
Lo {” " ] sin 271(11-}-1‘)(171.

If we put in the circular measures for the sines of these

small angles, we get,
] ' (331?(”“)}

1
=‘-".';7‘(I’|_ n—I1-F2
EANEREEETY lw n)] 2

i ) R
:.vzrld;gga { I—(n+ I);;1 } ,

s R
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In particular if R=7n,
7 n—l1

T80 2 7w

180 .
If n="_X100=5730, and dy=}".
Then, in general,

nt1),
g=5on(1—p |

and if D be integral=n+1,
g=25(D—1)=23nx
In like manner, we have,
[ n(1—cos di)—n(1—cos di)
p= { +m(1—cos di+ds) —ry(1—cos di—ds)

l +7,,[I'~—cos(a’1 .« o dn)]—R[1—cos(d\+

(n—m)2 sin® 3d,
+ (7)) 2 sin® $(d1 4 dy)
+ ..
= . /1(11—1)
+ (7'11‘1 ““7’11)‘2 Sll‘l2 S dl

+
“+(ra— R)’s ”(”2 I)a’l.

. I
Putting as before, »1=nr, and di=-d,, etc., we have,
) #

sin? ‘d1
-+ % sin® Lga’l
=<+t ...
- " IZ(Z?:“,,Q
57 z(n~ I)S 1.

e ,,1] in 1 n_(_ﬂ-i-l)

[ PR

7

T tndd[ I ﬂ'(\ll’f" 1)%]
—-"—] = Tt 3+6+4+ ...+ ¥n(n—1)+ { ” ]
+

) 2 ndi® {ﬂ(ﬂ+l)(7l+2) n(n—f—x)
;) ey

)

4

o) (s (8T

4 2

o

Jy

iz-(n—[— 1)

2
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In particular, if R=r,, we have,
/’zil(ll2-l) [ {'_w } 2 7’10’12
180
If, however, D is not integral and =+ 1, butis 7 de’grees and
2 minutes, we have, for n=5730 and d;==14,

gl 2
54 1000

The TasrE I, p. 14, Vol. I, No. 1, should be computed from

this formula, since the table there given is wwholly wwrong; it is

given here correctly.

TaBLe 1.
D I 2 3 + 5 6 7
00’ o 0,1 0,4 1,1 2,2 4,0 6,2
10 o 0,1 0,3 1,3 2,5 4,3 6,7
| 20 o 0,2 0,7 1,4 2,8 4.7 7,1
30071 o1 0,2 0,8 1,6 3,1 5,1 7,8
40' 0,1 03 09 1,8 34 - 5.5 8.3
50’ or o4 09 20 37 59 88
Diff 0,0 ' 0,0 0,1 0,2 0.3 0,4 0,5

The formula from which this table is computed is so simple
that no table is necessary.

In like manner the deflections from the initial tangent to set
the » points on the transition, tabulated in TasrLE II, p. 15,
No. 1, may be expressed in a simple formula as follows, in
minutes,

Vi=i[2w+3n+1].
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o

In same way,

De=%+ 107.
Di=4[(2n)*+ 3n—1].

Again, in running in the finial transition curve from the end
of the main curve, we find the necessary deflections tabulated
on the same page referred to above, in the TasrLe IIL
Noticing that these series of angles may be summed and
expressed in a formula by making use of the principles of
“finite differences”, we say that the deflection in minutes from
the terminal tangent of the main curve to set the sth point on
an z chord transition curve, is,

10 ‘
Vt=‘4‘ [m(6n+3—2m)—1].

This does away with TasLe II1.

To get working formulae for the coordinates of a point on
the transition curve (see x and v, TasrLE II) we notice
that the s2th chord of the transition makes with initial tangent
the angle {72°d; or }m? degrees, we have for the projections of
the chords on the initial tangent and a normal to it

Y 2 . 772 2
Jx=50 cos [ -5} i Jy=s50sin { > ]

v sofi—p [ V()
codr o zo[1—4 (180) 2] | nearly.
B
\-—-.0.( v,
T y*som o,
— 3 | < N,
50 m 180} 32 -

.
I = - .
X omt= 36( 6#°+ 157%), using the two highest powers.

. 1o = ] 2 51 54
. XY=30m 12 { 1% | (1 + 3mr*),

I .
=50m— id4(1”5+ 3m*), nearly enough.
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LI ;
Or the distance along the tangent is 354( P+ jm*) less than

the distance along the curves.

Likewise for v,

7180 | 2
m Or [m
=N =307 1Y
- e 180 45

m
X m*=L(2m+ 3m?), using highest powers.

O

" _v=£5£56(ﬂz3+%7722),
=0,073(m*+34m?).
To recapitulate:
In order to unite two tangents meeting at I° by a D" curve
and to pass from the tangents to the curve by a series of arcs
of 50 feet whose curvatures are respectively those of 'I°, 2°%

3 . . .7 curves, z being the number of integral degrees in D°
and m the number of minutes left over.

We have ’
(1) : T=(R+p)tan £/ +g¢

Where jﬁ:i—} 7+ 0.001 w1 n2.

_ n 1
g=50n(1— > } .
[If D is of integral degree then m=0, D=n+1 and

i

T=(R+

7 )tan $/+252].
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The vernier angles for setting the # points on the transi-
tion from its initial point are in minutes

(2) Vi=3(2n*+3n+1),
and from its terminal point
(3) V=L [me(Cu+ 3—2n)—1].

A tangent to the spiral at the »th point makes with the

initial tangent the angle
(4) 15u(n+1).

The distance from the beginning of curve, measured
along the tangent, to the sth point is less than the length
of the curve to that point by

(5) " :*—%”14401' nearly e ,
104 104
and the offset from the tangent is
(6) 0,073 (m2*-+ 4% or nearly 71”0
The transition moves the mid point of curve
psecilor Sbsec T
further from the intersection of the tangents.

Thus no tables are needed to run in such a curve (other than
table of tanget for getting T). It will in general permit easier
running if the small tables such as I, IT and III are used.

However # being an integer less than 8 the formulae

are easy.

I1.

Prof. Talbot has so nicely developed the Transition Spiral
for a railway curve that I am tempted to push the taper curve
to its limit without the calculus for sake of the interest that
may be had in the deduction of the formulae as well as for
such value as it may have for practical purposes.
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Let the design be to unite a pair of “tangents” by a circular
curve in such a manner that the transition from tangent to
curve is made by another curve whose curvature per jfoot of
length increases uniformly from tangent to main curve. The
curvature of main curve and transition being the same at their
point of contact.

Then the central angle of the last foor of the transition is
o5 D (letting D be the degree of the main curve in minutes),
and S the length in feet of the transition. If ¢ is the number
of minutes in the central angle of the first foot and 7 the
constant increment of central angle per foot, we have

. . D
== o0y
And as before
T=(R+p)tani1+g.
Where p and ¢ are as before,
2 -y 2
1) [ T radud,,

24 180 |

becomes )
=0,0000001212 $?D,
=0,0727 L*D .
Where L 1s length of transition in chains (100') and D,
degree of main curve in degrees.

Also
T n—1
1=180 5 Tlw
becomes
g=3(S—1).
180
Since ”:S, and fndn:‘{%T) RD=*._4

The sth central angle is 53 and the sth foot of the transition
makes with the tangent at its end the angle 1sd. The angle
which the tangent at s makes with. the initial tangent is
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$0s(s+ 1), therefore the sth chord makes 1ds* minutes with the
initial tangent. The projections on this tangent and a normal
to it are

Ja=cos §ds% dy=sinis

S
=N ()

0

(\)
e

;
10(3428)"

clar

2

&

15 o, &
=5 rgn M,

2

: D
=5—0,000%76 /? 5 nearly.

If / be s in chains.
In like manner for y

N

=8876 (v
=0,000048480(s*+45%)

+58-+3s%),

== 0,291 /3 D.
=0, 9 L .

If here s=S, the offset Y at the end of the curve is

Y =0,0000004848 DS™.

But $=0,0000001212 D52

Therefore, Y=4p.

The long chord of the spiral makes with the tangent the
angle #, such that

tan f=y/x.



270 ECHOLS: NOTE ON TRANSITION CURVE.

Since @ is small, we have

Y
=3438 '\
=0,16666 ds(s+3%) nearly,
=} Las(s~1).

But the tangent at s makes ¢=4ads(s+ 1) with the initial

tangent, hence
=4v + {0s.

It would be useless to carry the development of this curve
any further since Professor Talbot has worked the system up
so completely.

It may be suggested, however, that this system be applied to
that particular spiral whose length in feet is half the number of
minutes in the degree of the main curve. This gives a tran-
sition of about the proper length, such as is employed in
practice. In such a curve the change of deflection is one
minute per foot, giving very convenient and satisfactory
dimensions. The (approximate) formulae for such a tran-
sition, good up to an 8 curve, are

S=4D,
0=1{=0,02,

1 S®
—fb(: :{‘_ﬂ__.}L."S’
QZ{T(S——I),

846 | 878
YEST 18T 1000
=97 3._.3 s
st IOOZ
2

I=ko+yi=""+}/

si+s
g = todnz(” 1)
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The angle ¥ for deflecting from long chord to the tangent
at / on the spiral is
V=g—f=25—%.
For working purposes these are close enough,
=1L w=s— (503 y=/I?% ; s=yy5ss ¢=0,01(s2+5).
The tangent may be drawn

{R—I—7 [ 10} 3}ta +I+15D —o.s.

Where evidently the D_ in the brace need only be used to
the nearest integral degree.

There remains nothing to be considered unless it is the
vernier angle or deflection from the terminal tangent of the
main curve to set in a point on the terminal transition.

Let accents /7, ', 5, etc., indicate the same quantities running
from this end of the curve as is indicated by the unaccented
letters when running from the other end.

The capitals #, @, L, S, etc., refer to the whole transition.
Then in the triangle fogmed by the two ends of the curve and
a point on it, we have, since the angles involved are small and

the arcs s and s’ nearly enough equal to their chords,

In this eguation, we have,
=@—H=2H—3%1,
A=1421% =24 (L—/)%
Substituting these values and reducing, we get, in minutes
—100/L—13072 3L,
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If /'=L we get
t=2100L*—3L
=20—3L,
as should be..
The error of the first assumption manifests itself in the term
4L, a constant, for /=0 gives #'=3%L which is wrong. If, in
order to get correct results at the limits, we put %/ for $L we
get the working value of &
'=(100L—%)/ —142/?
_“( @ )[ 10 ul 1_



‘"NUMBER, DISCRETE AND CONTINUOTUS.

By Dr. GEORGE Bruce HALsSTED, UNIVERSITY oF TEXAS.

PREFACE.

The modern era of the world, the scientific, dates from 1637
when Descartes published his system of conditions which we
now interpret as giving to every point in a plane a distinct
name consisting of two numbers, and to every pair of numbers
a point. His conventions, though for his use explicable, and
- by him explained, as a geometric algebra opcrating with sects,
yet get their dual power only when seen as setting up a unique
one-to-one connection between number-pairs and points, so
making algebra talk geometry, and inversely, geometry talk
algebra. For example, the equation Ax+ By+ (=0, repre-
senting each pair of numbers which jointly satisfy the equation,
pictures now an aggregate of points, which are oz a straight
line while number is discrete, but which ar a straight line
when number is continuous. Descartes perhaps never passed
beyond Euclid’s representation of the ratio of two magnitudes
by two other magnitudes, never reached the conception of the
systematic representation of the ratio of two magnitudes by
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one magnitude, the primitive form of continuous number.
Newton makes this great step explicitly and consciously. At
the beginning of his Arithmetica universalis he says:

“Per Numerum non tam multitudinem unitatum quam
abstractam quantitatis cujusvis ad aliam ejusdem generis quan-
titatem quae pro unitate habetur rationem intelligimus. Estque
triplex; integer, fractus, et surdus: Jufeger quem unitas
metitur, Fractus quem unitatis pars submultiplex metitur, et
Surdus cui unitas est incommensurabilis.

* * * * * ) . . . .

Quantitates vel Affirmativae sunt seu majores nihilo, vel
Negativae sen nifilo minores.”

Here we have at once the whole continuous system of real
number, containing not only the absolute negative, but the
general irrational, for notice that here a ‘“‘surd” is not a ‘root’,
but the abstract ratio of any possible sect incommensurable
with the unit sect. We may readily prove rigidly that ratios
combine according to the same laws as natural numbers.

Following Euclid, we know that any ratio may be changed
into one with a given second term. If then x equals the ratio
of the sect A to the sect D, and y=DB:D, then the ratio
(A+B):D equals x-+y, the sum of the ratio v and v, a mag-
nitude independent of D. This addition obeys the same laws
as that for natural numbers, and the inverse x—xv is always
possible and determinate, if x>y.

That Euclid’s well-known composition of ratios obeys the
same laws as ordinary multiplication of natural numbers and
fractions, I have shown on page 205 of my Elements of
Geometry, and that the same holds for division follows from
the problem on page 203, ‘To alter a given sect in a given
ratio’, which is nothing but dividing the sect by the ratio.

For any one who is willing to base the continuity of the real
number-system on the continuity of space, fcr any one who is
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satisfied to say of the entire system of real numbers, that,
inasmuch as it contains an individual number to correspond to
every individuhl point in the continuous series of points
forming o right line, it is continuous, this ratio method would
seem to be the only logical one. The defining of numbers by
regular sequences, the use of series, the theory of limits, and
various new mathematical conceptions have been employed by
Weierstrass, G. Cantor, and Dedekind in establishing three
independent and cqually cogent theories which should prove
the continuity of number without borrowing it from space. 1
do not know of the existence of cither of these demonstrations
in English.  TFine's Number-System starts G. Cantor’s theory,
but does not get as far as cither of Cantor's fundamental con-
ceptst “zusammenhaengend und perfeet”, but instead is ‘content
to get continuity from the line. Upon this procedure Dedekind
is particularly severe.  Lle keeps his theory wholly pure from
any admixture of tmeasurcable magnitudes, and maintains that
for a great part of the science of space the continuity of its
forms is not a necessary presupposition, and gives the following
example:  If we take any three non-collinear points with only
the specification, that the ratios of the sects AB, AC, BC are
algebraic numbers, and consider as present in space only those
points M, for which the ratios of AM, BM, CM to AB are
likewise algebraic numbers then the space consisting of these
points is throughout discontinuous; [it lacks all points D for
which a ratio, as AD, to AB in a transcendent number such as
7 or ¢]; yet despite the discontinuity, the perforation, of this
space, all constructions occurring in Euclid are in it just as
achievable as in perfectly continuous space. The discontinuity
of this space would therefore never be noticed, never be dis-
covered, in Euclid's science.

“Um so schéner erscheint es mir, dass der Mensch ohne jede
Vorstellung von messbaren Grossen, und zwar durch ein
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endliches System einfacher Denkschritte sich zur Schopfung des
reinen, stetigen Zahlenreiches aufschwingen kann; und erst
mit diesem Hilfsmittel wird es ihm nach meiner Ansicht
moglich, die Vorstellung vom stetigen Raume zu einer
deutlichen auszubilden'.

CHAPTER 1.
COUNTING AND NATURAL NUMBERS.

. NUMERALS.

1. An Algebra is an artificial language composed of
symbols with their laws of combination, and possessed of
peculiar advantages in giving of actual relations representations
which can be manipulated according to rules of operation and
procedure, experimented upon to give new knowledge, ac-
cording to organized processes. The first algebra was slowly
formed throughout centuries, to investigate the properties of
numbers. '

2. In nature, each distinct thing is perceived as an indi-
vidual. Each distinct thing is a whole by itself, a unit. The
individual thing is the only whole, or distinct object which
exists in nature. But the human mind takes like individuals
together and makes of them a single whole, and names it.
Thus we have made the concept a flock, a herd, a bevy, a
covey, a family. These are artificial units, discrete magnitudes;
the unity is wholly in the concept, not in nature; it is of human
make. From the contemplation of the natural individual in re-
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lation to the artificial individual spring the related ideas ‘one’
and ‘many’. A\ unit thought of in contrast to ‘many’ as
not-many, gives us the idea oze. A ‘many’ composed of ‘one’
and another ‘on¢’ is characterized as two. A many composed
of ‘one’ and the special many ‘two’ is characterized as ‘three’.

Numerals applied thus each to a special kind of discrete
magnitude are called cardinal numbers.

But if for use in picturing all special artificial units or discrete
magnitudes, we make an abstract system of elements where no
characteristic of any element is retained beyond its simple dis-
tinctness from all others, and give each element successively a
name, ‘first’, ‘second’, ‘third’, etc., these would be ordinal
nunebers.

Ordinal numbers will picture a group by successively
picturing scparately cach element in the group. A cardinal
number gives a single special picture for a special group.

Fach number-picture of a group is wholly abstract, in that it
represents the individual existence of the elements of the
group, and nothing more.

Number is a creation of the human mind, and only applies
primarily to the artificial wholes created by the human mind,
discrete aggregates,

3. For the transmission of these abstract conceptions the
fingers formed the original apparatus, and the name of a
number denoted when referring to an artificial unit, as of
sheep, that a certain group of fingers would touch successively
the natural units in the discrete magnitude indicated, or a
certain finger stand as a symbol for the numerical characteristic
of that group of natural units.

Our word five is cognate with the Latin quinque, Greek
zivre, Sanskrit pankan, Persian pendji; now in Persian penjeh
or pentcha means an outspread hand. In Eskimo ‘hand me’
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is tam ut'che, ‘shake hands’ is tal la'lue, ‘bracelet’ is
tale gow'ruk, ‘five’ is talema.

“In Greenland, on the Orinoco, and in Australia alike, ‘six’
is ‘one on the other hand .

II. COUNTING. v

4. The operation of counting consists in establishing such a
correspondence between two groups that to every thing ov
element of the one group is assigned one particular thing or
element of the other.

It establishes a one-to-one correspondence of two aggre-
gates, one of which is carried about as a standard; and if a
group of things can have this correspondence with the standard
group then those properties of the standard group which are
carried over by the correspondence will belong to the new
group.

5. The Chinese even at the present day extend the primary
standard group, the fingers, by substituting for it a group of
ivory balls movably strung on rods fixed in an oblong frame.
With this abacus they count and perform their arithmetical
calculations.

6. In many languages there are not even words for the first
ten groups, so that the actual fingers are used; higher races
have not only named these groups, but have extended indefi-
nitely this system of names, and no longer count directly with
their fingers, but use the names, so that the operation of
counting a certain assemblage of things consists in assigning to
each of them one of these numeral words, primarily an ordinal,
since the cardinal word now used represents not the individual
with which it is associated, but the entire group of which this
individual is the last.

1il. RECORDED SYMBOLS,

7. But for purposes of counting, a group of objects can be

represented by a graphic picture so simple that it can be
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produced whenever wanted by just making a mark for each
distinct object.

Thus the marks I, II, III, 1111, picture first the groups with
a permanence beyond gesture or word, and for many important
purposes, one of these diagrams, though composed of indi-
viduals all alike, is an absolutely perfect picture, as accurate as
the latest photograph, of any group of real things no matter
how unlike.

8. Such a record would not only help in getting an idea of
an actual group, as a flock of sheep; but after a lapse of time,
would help in recalling and accurately reproducing that idea.

Thus the shepherd who before sleeping makes such a
picture of his flock, may, upon waking, use that picture to
compare his flock of yesterday with his flock of to-day. The
scout who makes such a picture of a band of enemies, may use
it to rouse in the minds of his companions an accurate idea of
what he has seen.

IV. GRAPHIC NUMERALS.

9. Each stroke of such a group may be called a unit.
Each group of such units will correspond always to the same
group of fingers, to the same numeral word.

10. To this primitive graphic system of numeration there is
no limit, and when it becomes cumbrous. the hands again
suggest natural abbreviations.

The Etruscan and Roman numeral V comes probably froma
picture of an open hand, and X from two V’s joined thus X,-

11. Inthe Roman notation as still in use we see another
and more conventional element in distinguishing IV from VI
and IX from XI. This is the significant use of relative
position.

12. The systematic decimal system in accordance with
which, even in the times of our pre-historic ancestors, a few
number names were used to build all numeral words, is sug-
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gested by the procedure even at the present day of those
Africans who in counting use a row of men as follows: The
first begins with the little finger of the left hand and indicates,
by raising it and pointing or touching, the assignment of this
finger as representative of a certain individual from the group
to be counted; his next finger he assigns to another individual;
and so on until all his fingers are raised. And now the second
man raises the little finger of his left hand as representative of
this whole ten, and the first man, thus relieved, closes his
fingers and begins over again. When this has been repeated
ten times, the second man has all his fingers up, and is then
relieved by one finger of the third man, which finger therefore
represents a hundred, and so on to a finger of the fourth man,
which represents a thousand, and to a finger of the fifth man,
which represents a myriad.

V. THE ABACUS.

13.  An advance on this actual use of fingers with a posi-
tional value depending on the man’s place in the row, is seen
in the almost universally occurring abacus, 2 rough case of
which is just a row of grooves in which pebbles can slide.
With most races, as with the Egyptians and Greeks, the
grooves and columns are vertical like a row of men.

I4. Asin the written additively combined numbers of all
races the greater precedes the less, so here, for races reading
from left to right, the pebbles in the right-most column cor-
respond to the fingers of the man who actually touches or
checks off the individuals counted; it is the units column.

15. Butin the abacus a simplification occurs. One finger
of the second man is raised to picture the whole ten fingers of
the first man, so that he may lower them and begin again to
use them in representing individuals. Thus there are two
designations for ten, either all the fingers of the first man or
one finger of the second man.
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The abacus omits the first of these equivalents, and so each
column contains only nine pebbles.

16. And just so to-day we use nine digits and have no digit
corresponding to the Roman X, for X is all the fingers of the
first man, while we, like the abacus, use 10, which is one finger
of the second man.

17.  The use of the digits (Latin, digitus, a finger), the sub-
stitution of a single symbol for each of the first nine picture-
groups, and the splendid invention, by the Hindoos, of the
zero, 0, nought, cypher, made possible our present perfect posi-
tional notation for number, which the decimal point (say
rather, digital point) empowers to run down below the units.

18. Cyphering, which thus attains an ease and facility that
would have astonished a Greek or Roman, consists in com-
bining given numbers according to fixed laws to find certain
resulting numbers.

19. That the number of any finite group of distinct things
is independent of the order in which they are taken, that
beginning with the little finger of the left hand and going from
left to right, a group of distinct things comes ultimately to the
same finger in whatever order they are counted, follows simply
from the hypothesis that they are distinct things. If a group
of distinct things comes to say five when counted in a certain
order, it will come to five when counted in any other order.

20. For a general proof of this take as objects the letters
in the word friangle and assign to each a finger, beginning
with the little finger of the left hand and ending with the
middle finger of the right hand.

Each of these fingers has then its own letter, and the group

of fingers thus exactly adequate is always necessary and
sufficient for counting this group of letters in this order.

That the same fingers are exactly adequate to touch this
same group of letters in any other order, say the alphabetical,
follows because, being distinct, any pair attached to two of my
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fingers in a certain order can also be attached to the same two
fingers in the other order.

In the new order I want & to be first. Now the letters 7 and
a are by hypothesis distinct. I can therefore interchange the
fingers to which they were assigned, so that each finger goes to
the object previously touched by the other, without using any
new fingers or setting free any already employed. The same
is true of »and ¢, of 7 and g,etc. AsI goto each onel can
substitute by this process the new one which is wanted in its
stead in such a way that the required new order shall hold
good behind me, and since the group is finite, I can go on in
this way until I come to the end without changing the group
of fingers used in counting, that is, without altering the number,
in this case eight.

21. The group of fingers exactly adequate to touch a group
of objects in any one definite order is thus exactly adequate for
every order. But when touching in one definite order each
finger has its own particular object and each object its own
particular finger, so that the group of fingers exactly adequate
for one peculiar order is always necessary and sufficient for
that one order. But we have shown it then exactly adequate
for every order, therefore it is exactly necessary and sufficient
for every order.

CHAPTER 11

THE BEGINNING OF ALGEBRA.

VI. THE SYMBOLS + AND =.
22. The natural numbers, for example, the primitive
pictures I, II, III, IIII, begin with a single unit, and are
changed each to the next always by taking another single unit.
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The operation of incorporating this new unit into the pre-
ceding diagram may be indicated by a symbol first used in the
15th century, a little Maltese cross ( + ) which is read by the
Latin word p/us, and called the plus sign.

23. A number is said to be egral to, or the same as, a
number otherwise expressed, when their units being counted
come to the same finger, the same numeral word. The symbol
=, read equals, is called the sign of equality, and takes the part
of verb in this symbolic language. It was invented by an
Englishman, Robert Recorde, who published it in 1537, some
say 1540. Equality is a mutual relation always invertable. An
algebraic sentence using this verb is called an equation.

Thus we may write

=I.
I=1~+1=2.
Ml=1+1+1=2+1=3.
MIl=1+1+1+1=2+1+1=3+I=41
VII. INEQUALITY.

24. When the process of counting the units of one number
simultaneously one-to-one with the units of a second number
ends because no unit of the second number remains uncounted,
but the units of the first number are not all counted, then the
first number is said to contain more units than the second
number, and the second number is said to contain less units
than the first.

If a number contains more units than a second, it is called
greater than this second, which is called the Jesser.

By adding units to the lesser of two natural numbers we can
make the greater.

25. Thomag Harriot, (1560—1621), devised the symbol >,
published 1631, read ‘is greater than’, and called the sign of
inequality. '
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Since the result of counting is independent of the order of
the individuals counted, therefore of two natural numbers the
one is always greater than, equal to, or less than the other.

Without knowing the number #», we can write either 2>5 or
NEER O 3>,

VIII. PARENTHESES.

26. When we can get a third number from two given
numbers by a definite operation, the two given numbers joined
by the sign for the operation and enclosed in parentheses may
be taken to mean the result of that combination.

- The result can now be again combined with another given
number, and so we may get combinations of several numbers,
though each operation is performed only with two. Thus
(1+1)+1=3.

Parentheses indicate that neither of the two numbers
enclosed, but only the number produced by their combination,
is related to anything outside the parentheses.

With the understanding that the primary view of any chain
of operations is that the operations are to be carried out suc-
cessively from left to right, parentheses (first used by Albert
Girard, 1629) may often be omitted without ambiguity.

27. The representation of one number by others with
symbols of combination and operation is called an expression,

By enclosing it in parentheses, any algebraic expression
however complex, in any way representirig a number, may be
operated upon as if it were a single symbol of that number.

If an expression already involving parentheses is enclosed in
parentheses, each pair, to distinguish it, can be made different
in size or shape.

The three most usual forms are the parentheses (, the

bracket [, and the brace { .
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In translating from Algebra into English, ( should be called
Jirst parenthesis, and ) second parenthesis; [ first bracket,

] second bracket; { first br;u:e, } second brace.

-

IX. SUBSTITUTION.

28.  No change of resulting value is made in any expression
by substituting for any number its equal however expressed.
From this it follows.that two numbers each equal to a third are
equal to one another. This process, putting one expression
for another, substitution, is the most primitive yet the most
important proceeding of algebra. A single symbol may be
substituted for any algebraic expression whatever.

29. Permutation consists in a simultaneous carrying out of
mutual substitution, interchange.

Thus @ and 4 in an expression, as ab¢, are permuted when
they are interchanged, giving bac.

More than two symbols are permuted when each is replaced
by one of the others, as in aéc giving éca or cab.

CHAPTER IIL

THE TWO DIRECT OPERATIONS.

X. ADDITION.

30. Suppose we have two natural numbers in their primitive
form, as IIT and IIII; if we write all these units in one row we
get another natural number; and this process of putting the two
groups together to make a single group, of increasing the one
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group by the other, is called addition. Addition is such a
taking together of two numbers that the units preserve their
respective independence, just as objects in the taking together
involved in counting them.

31. The result of addition is called a swmz, and is attained
by a repetition of the operation of forming a new group from
an old by taking with it one more unit.

Thus the sum of three and two is [(3+1)+ 1], and this is
what is meant by 3-+2, so that 3+2=[(3+1)+1].

32. If given numbers are written as sums of units, e. g.
(exempli gratia), z=1+1, 3=1-+1-+1, the result of adding
then is obtained by writing together, _]omed by the plus sign,
these rows of units. Hereitis 1--1+1+1 +1=5,

To express the addition of two and three we connect by -+
the parts set down in order each expressed as a whole; thus
(r+1)+(1+1-+1), and the explanation of this expression, or
the definition of the sum is given by the equation

{1+ 1)+ (1+1+1)=1-+1-1-+1+1.

Since number is independent of the order of counting, there-
fore in any natural number expressed in its primitive form, as
ITII, the permutation of any pair of units produces neither
visible nor real change. The units of numeration are com-
pletely interchangable. Therefore we may say, adding
numbers is finding one number which contains in itself as ‘many
units as the given numbers taken together.

33- In defining addition, we need make no mention of the
order or the groups in which the given numbers are taken
together to make the sum.

A sum is independent of the order of adding. 2+ 3=3~+ 2.

A sum is independent of the grouping of its parts.
(44—0)—'— =4+ (2+3). For a change in the order or the
grouping of the parts added is only a change in the order or
the grouping of the units, which change is without influence
when all are counted together.
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-34. To write wholly in algebra that addition is an operation
unaffected by permutation or grouping of the parts added,
though applied to any numbers whatsoever, we cannot use
numerals, since numerals are always absolutely definite.

‘ But if, following Vieta, 1579, we use letters as general
symbols to denote numbers left otherwise indefinite, we may
write a to represent the first number not only in the sum 243,
but in the sum 4+ 2, and in the sum of any two numbers.
Taking & for a second number, the algebraic sentence
a+b=4f+ais a statement about all numbers whatsoever. It
says, addition is a commutative operation.

35. In a sum of units, brackets inserted anywhere produce
no change. The general statement (a—+8) + c=a+ (4 ¢) says,
addition is an associative operation.

XI. FORMULAS.

36. For a sum of three numbers the associative and com-
mutative laws of liberty give the following six equivalent
expressions,

a+b+c=b+c+ra=c+at+b
=a+e+b=b+ta+c=ct+bra

37. Equalities like the preceding have to do only with the
very nature of the operations involved, and not at all with the
particular numbers operated with.

Such an equation is called a formula.

38. A formula is characterized by the fact that for any
letter in it any number whatsoever may be substituted without
~destroying the equality or restricting the values of any other
letter. In a formula a letter as symbol for any number may be -
replaced not only by any digital number, but also by any other
symbol for a number whether simple or compound, in the last
case bracketed. Since a+é=b+a, therefore (a-+c¢)+b=
b+ (ate)y=atb+e
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Thus from a formula we can get an indefinite number of
formulas and special numerical equations.

39. Each side or member of a formula expresses a method
of reckoning a number, and the formula says that both reckon-
ings produce the same result.

40. A formula translated from symbols. into words gives a
rule.

As equality is a mutual relation always invertable, a formula
will usually give two rules, since its second number may be
read first.

41. Two or more formulas sometimes combine to give a
single rule, thus

To sum any set of numbers it is indifferent in what order
the given numbers are added together.

42. By definition, from the inequality

a /7

we know that 2 could be obtained by adding units to é.
Calling this unknown group of units #, we have

a=b-+u.
Inversely, if a=b-+u
then a >b:that is,
a sum of natural numbers is always greater than one of
its parts.

But we have proved

at+ (b+u)y=(a+b)+u,
‘and (a+u)+b=(a+b)+u, therefore
at (b+u)>a+b,
(a+u)+é>a+ b:that is,
a sum changes if either of its parts changes.
A sum increases if either of its parts increases.

XII. MULTIPLICATION.

43. Sums in which all the parts are equal frequently occur.
Such additions are laborious and liable to error.
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But such a sum is determined if we know one of the equal
parts and the number of parts. The operation of combining
these two numbers to get the result is called multiplication; the
result is then called the product.

The part repeated is called the multiplicand, and the number
which indicates how oft it occurs is called the multiplier.

44. In forming a product, the multiplicand is taken once
for each unit in the multiplier. To multiply consists in doing
with the multiplicand what is done with the unit to form the
multiplier.

Following Wm. Oughtred (1631), we use the sign » to
denote multiplication, writing it before the multiplier but after
the multiplicand. '

Thus 1% 10, read one multiplied by ten, or simply one by
ten, stands for the product of the multiplication of 1 by 10,
which by definition equals ten. The multiplication sign may
be left out when the product cannot reasonably be confounded
with anything else, thus 1@ means 1X ¢, read one by &, which
by definition equals #. From our definition also @ x I, that is
a multiplied by 1, must equal a.

46. Multiplication of a number by a number is commutative.

Multiplier and multiplicand may be interchanged without

altering the product.
ITIII For if we have a rectangular array of a rows
1 1111 each containing 4 units, it is also & columns each
II111 -containing @ units. Therefore & x a=axé.

47. Taking apposition to mean successive multiplication,

for example,
abcde= { [(ab)c] u"} e,

calling the numbers involved facfors, and the result their
product, we may prove that commutative freedom extends to

any or all factors in any product.
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For changing the order of a pair of factors which are next

one another does not alter the product.

abcd=acbd.
aaaaa For ¢ rows of a’s, each row containing & of them,
aaaaa isd columns of @’s, each column containing ¢ of
@ aaaa them.

So ¢ groups of a4 units come to the same number as &
groups of ac¢ units. ,

Consequently  groups of adc units are the same as ¢ groups
of acd units.

This reasoning holds, no matter how many factors come
before or after the interchanged pair. For example,

abedefg=abc ed fg,
since in this case the product a)¢ simply takes the place which
the number & had before. .And ¢ rows with ¢ times abe in cach
row come to the same number as ¢ colums with ¢ times afic in
column.

It remains only to multiply this number successively by
whatever factors stand to the right of the interchanged pair.

It follows therefore that no matter how many numbers are
multiplied together, we may interchange the places of any two
of them which are adjacent without altering the product.

But by repeated interchanges of adjacent pairs we may
produce any alteration we choose in the order of the factors.

This extends the commutative law of freedom to all the
factors in any product.

48. To show with equal gencrality that multiplication is
associative, we have only to prove that in any product any
group of the successive factors may be replaced by their
product.

abedefgh=abc(def)gh.

By the commutative law we may arrange the factors so that

this group comes first.
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Thus abedefglh=def abegh.

But now the product of this group is made in carrying out
the multiplication according to definition.

Therefore abedefgh=defabegh= (def)abegh.

Considering this bracketed product now as a single factor of
the whole product, it can, by the commutative law, be brought
into any position among the other factors, for example, back
into the old place; so

abedefgh=defabegh=(def)abegh=abe(def)gh.
XII1. THE DISTRIBUTIVE LAW.

49.  Multiplication combines with addition according to
what is called the distributive law. Instead of multiplying a
sum and a number we may multiply each part of the sum with
the number and add these products.

a(b+c)==(b+c)a=ab+ac.
4X5e(21 3)= (24 3)4=2 0 443X 450 4

IFour by five equals five by 4, and four rows of (2+43) units

may be counted as four rows of two units together with 4 rows

of 3 units.

As the sum of two numbers is a number, we may substitute

(a+6) for b in the formula
(6+ c)d=Dbd+cd, which thus gives
[(a+b)+e]d==(atb)d+ cd=qad + bd-cd.

So the distributive law extends to the sum of however many
numbers.

The terms ‘distribute’ and ‘commutative’ were introduced by
Servois in 1813.

Rowan Hamilton in 1844 first explicitly stated and named
the ‘associative’ law.
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51. Since
a(b+¢) >ab and
(a+6)b>ab, therefore
a product changes if either of its factors changes.
A product increases if either of its factors increases.

CHAPTER IV.

THE TWO INVERSE OPERATIONS.

X1V, [INVERSION.

52, In the preceding direct operations, in addition and mul-
tiplication, the simplest problem is, from two given numbers to .
make a third.

If a and & are the given numbers, and «x the unknown
number resulting,

x=a+é
r=ax &, according to the operation.

An Inoverse of such a problem is one where the previously
sought number is given, and also one of the others, to find the
third. The operation by which such a problem is solved is

“called an inverse operation.

To invert in algebra is like inverting in geometry where
there are two parts in the hypothesis and one in the con-
clusion. The conclusion taken with either part of the original
hypothesis gives the hypothesis of an inverse.
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53. Since the two parts of a sum, as also the two factors of
a product, in accordance with the commutative law, can be
interchanged, so the inverse problem is the same whichever of
the two numbers is sought, since we may make the first
number the second without changing the result of the direct
operation. .

XV. SUBTRACTION.

54. Suppose we are given a sum which we designate by «a,
and one of its parts, say 64, to find the other part, which, yet
unknown, we represent by .x.

Since the sum of the numbers & and x can also be expressed
as 6-+.x, we have the equation xv—+é=a.

But this equation differs in kind from the literal equations
heretofore used.

It is not a formula, for any digital number substituted for
one of these letters restricts the value permissible for the
others.

Such an equation is called a synthetic equation.

55. The inverse problem for addition now consists just in
this,—to solve the synthetic equation &+ v=a, when a and &
are given; in other words, to find a definite number which
placed as value for .+ will satisfy the equation, that is which
added to 4 will give a.

36. If the operation by which from a given sum a and a
given part & we find a value for v is called from a subtracting b,
then, using the minus sign (—) to denote subtraction, we may
write the result @—&, read & minus &.

57.  We may get this result, remembering that a number is
a sum of units, by pairing off every unit in 4 with a unit in 4,
and then counting the unpaired units. This gives a number
which added to & makes .

The expression a—4& is called a remainder.
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The term preceded by the minus sign is called the sub-
trahend.

By definition, a—b+ b=a,
and also b+ (a—b)=a,
or b+ a—b=a.

(Zv be continued.)



GEOMETRIC INVERSION.

By Axxie L. MacKinxox, LAWRENCE, Kaxsas.

1. Geometric inversion is a method of transformation by
means of reciprocal radius vectors. Let O be a fixed point
and P and P’ two points on a line through O; P and P’ are said
to be inverse when OP.OP'=M, M being any constant. It is
convenient for algebraic and geometric purposes to take
OP.OP'=1. :

2. Geometrically the operation of inversion may be thus
represented. Draw a unit circle ™ y:)
with center O. Let P be any
point without the circle; join OP;
from the point P draw tangents
to the unit circlee. M and N
being the points of tangency;
draw MN. The point P' at
which MN intersects OP is the Fic. 1.

I L1
inverse of the point P, since OP.OP'=1 or OP’—-:G-P or 7=~
And conversely, the point P is the inverse of the point P'. It
may be noticed that every point without the circle inverts into
a point within the circle and vice versa.
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3. In order to determine the transformation of the various
figures or systems of points, it will be convenient to have ex-
pressions for the relations between the rectangular co-ordinates
of the two points P and P'.  From the relations of rectangular

and polar co ordinates, we have the equation

(1) X'+ yv'=y (cos +sin #).

. I
and since »'==-
o

I .
(2) Xty = (cos t +sin th)

%
’ ’ 7/ .
or(3) v+ y'=, (cos f +sin #)

substituting x and y for their polar equivalents » cos § and

7 sin A, we obtain

, , Xty
(4) Xty =g
and since r=x24y?
-, R
(5) XY= ;yv.)
it S S
x e and y-——xz_!_yz (6)
and conversely
(7) : Y= ATy VTR

THE INVERSION OF STRAIGHT LINES.

4. Let us examine the genei‘al équatioﬁ of the straight line.
(1) . Ax+By+ C=0
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substituting formulae (7) of the last paragraph

or
(3) Ax' +Br'+C(a?+1%)=0

which is the equation of a circle through the origin. Let the
circle (Fig. 2) with center O be the unit circle and AB any
straight line. The circle with center C is the inverse of the
line AB. Since the circle will be symmetrical with respect to
OX, which is the perpendicular
to AB, the diameter of the
circle may be measured on OX

Al

Y
and is the reciprocal of OP. If
the line AB be tangent to the Om X
unit circle, the reciprocal of U
OP=1 and the diameter of the

inverse circle is unity. If the " B
line AB intersect the unit circle, \"
the reciprocal of OP is 1 and Fie. 2.

the diameter of the inverse circle is >1. If the line AB lie
without the unit circle, the reciprocal of QP is <1 and the
diameter of the inverse circle is < 1. The greater the distance
OP, the smaller the diameter of the inverse circle; if OP== |
the diameter of the inverse circle = & =0, and the inverse
circle is a point; and if OP=o0, the diameter of the inverse
circle = & =oc, and the inverse circle is a straight line. We
may conclude that every straight line inverts into a circle
passing through the origin; unless the line itself passes through
the origin, in which case the line remains unchanged, although
the order of its points is changed.. From the above it may be
seen that a system of parallel lines inverts into a system of
tangent circles passing through the origin whose centers are on
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a line perpendicular to the parallel lines; and a pencil of lines
inverts into a system of intersecting circles passing through the
origin.

THE INVERSION OF CIRCLES.

5. Substituting formulae 3. . . (7) in the general equation
of a circle

(1) Axt+Art+2Gr+2Fy + C=o0
we obtain
Al -rr“) B ’7Gk T”Fl'
()2 e
or (3) A+2Gx" +2Fy + C{a™+ v?)=o0
which is still the equation of a circle. If the circle pass
through the origin, ('==0 and F=o0 and the equation of the
circle is

(2) +C=o0

(4) 1%+ 3+ 2Gy=0
which becomes upon inversion
z? 2 2Ga’
(5) ;- _;2'} LR 1 Ty "lj TN =0
(2= )2 (K2 )T (A7)
or
(6) 1+ 2Gx’=0

which is the equation of a straight line, (converse of the in-
version of a straight line).

The equation of a circle with the origin as center

[nd -2 "
(7) X ‘T_‘V
inverts into
"
A § 4 ;
(S) =

(.v"—‘#-_»u"’f)f? (22452
(9) Xyt (a2
. A 1
(10} a? +_y2=;,

the equation of a circle concentric with the given circle and

whose radius is 1. It is evident that if a circle cut the unit
r .
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circle in two points, the inverse circle will pass through the
same two points.

THE ANGLE OF THE INVERSE CURVE.

6. Let A and B be two points (Fig. 3) on any curve, and
A" and B’ corresponding points on the inverse curve.

OA.OA'=1

OB.OB'=1
OA.OA'=0B.0B, ' g B 3B

OA OB
OB~ OA
and £ O is common to the A
A's OAB and OA'B'; there- Fic. 3.
fore the A's are similar and / OB'A'=, OAB,
, OBA==;/ OA'B
and /ANB=72AB0-+,0.

If the point B approach A the cord AB will have for its
limit the tangent to the curve at A, and the chord A'B" will be
approaching at its limit the tangent at the point .\’ and 7.0
will become zero and / AA'B'=; A’AB. We may conclude
that a radius vector cutting two inverse curves, makes angles
with the tangents at the points of intersection which are equal
but measured in opposite directions; and also that if two curves
meet, their inverse curves meet at an angle equal to the aagle
of the first curves and measured in an opposite direction.

or

7. It is now evident that if a given circle cut the unit circle
orthogonally at the points A and B, the inverse circle will cut
the unit circle orthogonally at A and B: and that in order to
satisfy this condition the inverse circle must coincide with the
given circle. Conversely, every circle unchanged by inversion
cuts the unit circle orthogonally, unless it be the unit circle
irself.
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8. Ifa circle pass through a given point and the inverse of
that point, the circle and its iuverse circle will coincide; since
the circles will have four points in common, the given point and
its inverse and the two points of intersection on the unit circle.
Any system of circles through two points and not passing
through the origin inverts into another system of circles
through two points. Any system of circles tangent to the unit
circle inverts into a system of circles having internal contact

with the unit circle at the point of tangency of the given

system.
INVERSION OF CONIC SECTIONS.
9. Substituting formulae 3. . (7) in the general equation
of the second degree,
(1) ax?+2bxy + by*~+2gx + 2fy + c=0
we obtain

(2) ax?+2bxy+ by + (2gx + 2/p) (3% + %) + c(x* + y2)=0
the equation of a bicircular, nodal quartic.

Transferring the origin to a point on the curve, the equation

becomes,
(3) ax?+26xy + pv’ + 265+ 2fy=0
and substituting formulae 3 . . . (%)
(4) ax®+ 2bxy + py*+ (2gx+2fy) (22 + y?) =0,

an equation of the third degree, the equation of a circular, .
nodal cubic.

Since in the equation of the inverse curve the absolute term
and the terms of the first degree vanish, the inverse curve hasa
double point. This double point is an acnode, crunode or
cusp, according as the original curve is an ellipse, hyperbola or
parabola.
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10. Tue Erripse—The equation of the ellipse referred to
the axes

(1) T

becomes upon inversion
(2) B+ @Pyr=at it (at+ 2at ),
one of the foci being taken as origin, the equation of the
ellipse becomes
(3) P x— ¢) +ady =at
inverting
(4) Pad—20%cx(a? + 7)) + &vi== (a0~ ) (P + 37)
the equation of a Zimacon.

11. Tue HvrersorLa.—The equation of the hyperbola
( 1 ) 5751
2

being similar to that of the ellipse excepting in the sign of the
coefficient of y will evidently invert into the same forms as the
equation of the ellipse. The equilateral hyperbola whose
equation is

(2) K= yP=a*

inverts into
o aw I
(3) (¥4 37)= s (v =")

the equation of the Lemniscate of Bernoulli.
12. Tue ParaBora.—Inverting the equation of the para-
bola with vertex as origin

(1) y=apx
we obtain the equation of the Cissoid of Diocles.
(2)° yr=4pttapxy’.

transfering the origin to the focus the equation of the parabola
becomes

(3) Y=4px+4f
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inverting
( +) _y'—’: +]x,v,‘,:-: + 4/,_‘:",2 + 4 /,‘."\A + 8])2.\'2_\'3 -+ 41,2;‘.4
the equation of the cardioid.
INVERSE OF HIGHER CURVES.
13. Considering the general equation of a cubic
(1) rP=Axt 4 3Ba?+ 3Cx+ D
and inverting, we obtain
( 2) .\‘_]'2::\1.\'3-1—3 B'\.‘_'(x‘z +;‘.2) +43 C\( _\:2 + _\‘,‘.')2 + D(.\.‘.’ + .,‘,‘.’ )?.
which is an equation of the sixth degree. Inverting the general
equation of the cubic with the origin on the curve (D=0) we
obtain
(3) = AN gBa( At 17) £ 3 ()
an equation of the fourth degree.
Several special forms of the cubic invert into curves of lower
order than the sixth. The inverse curves of the conics assume
upon the second inversion the original conic form or become

curves of the fourth degree.

14. The transformation by inversion of a curve of the »th
degree will exhibit the various forms which the Zigher curves
may assume. We write the general equation in the form

(1) Uiy Tyt uyt . . . Uy =0
in which u, denotes the absolute term and u;, uy, 2, etc., denote
the terms of the first, second, third, etc., degrees. The inverse
of a curve of the #th degree is in general a curve of the 2uth
degree, the equation assuming the form '

(2) Mon t Moyt Moy vt . . . FUy=0
if the center of the inversion be on the curve, #==0 and the
inverse curve is of the degree 2z—1. If the center of inversion
be a double point on the given curve, #==0 and #;=0 and the
inverse curve is of the degree 2z 2; if the center of inversion
be a multiple point of the order £, the degree of the inverse
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curve is of the order 2z—%. Since a curve of #th degree can
have no multiple point of higher order than #—1, the degree of
the inverse curve cannot be less than 2z—(7z—1) or (nz+1).

If the given curve of the #th degree be circular the degree of
the inverse curve in cach case given above is diminished by 2.
The inverse of a curve of the #th degree has a multiple point
of the order & at the center of inversion. If the given curve
has a multiple point of order £ not at the center of inversion,
the inverse curve will have a multiple point of the same order.

15. Having two inverse curves with tangent circles at in-
verse points, the tangent circles are inverse to each other with
respect to the origin of the first curves. The radius of curv-
ature of a curve at any point is measured on an osculating
circle; the radius of curvature on the inverse curve may be
measured on the inverse of the osculating circle. If the oscu-
lating circle pass through the origin, it inverts into a straight
line; and the point inverse to the point of osculation is a point
of inflexion, since its radius of curvature is infinite as denoted
by the straight line.

APPLICATIONS.

16. It is as a method of proof that inversion shows its
power. In deducing the properties of higher curves from
those of lower order whose properties are well known and
readily found, it may be considered a useful instrument in
modern geometry; and is superior in this respect to projection
and reciprocation, both of which prove the properties of curves
from those of the same order,

Properties which concern the magnitude of lines and curves
are in general not transferable by inversion; but it is evident
that lines through the origin furnish exceptions to this general
rule, lines through the origin being unchanged by inversion.
Also a certain proportion may give a set of corresponding pro-
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portionals in the inverse figure. All properties relating to the
relative position of lines and curves are readily inverted; and
these properties furnish sufficient material for the further de-
velopment of properties and mecasurements on the inverse
curve.

1%. In the examples-given below use is made of the pre-
ceding proofs without any reference to particular propositions.
We first give a full explanation of one case of the transference
of the properties of a conic to a higher curve by the method of
inversion.

The tangents to a parabola at the extremities of a focal chord

which makes an agle 0 with the axis are inclined at angles of
0

= ;
sand ;— 5 to the chord. The parabola inverted with the focus
"~ as origin becomes a cardioid having its cusp at the origin
[12+ (4)]; the focal chord becomes a cuspidal chord in the
cardioid retaining the inclination #[4:67; the tangents to the

parabola invert into circles touching the cardioid at the ex-
tremities of the cuspidal chord and at angles of Eandé"—g-
Since the angle at which a circle meets a line may be measured
by the angle made by a tangent at the point of meeting, and
since the tangent of the tangent circle will be also the tangent
of the cardioid, it is true that the Zangents to a cardioid at the

extremities of a cuspidal chord whick makes an angle 0 with
‘ - #
" .
the axis are inclined at angles of - and - — 5 0 the cuspidal

chord.

18. EXAMPLES:

(1.) There are three points on a conic whose osculating
circles pass through a given point on the curve; these three
points lie on a circle passing through the given point.
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Inversely.—The three real points of inflexion of a circular,
nodal cubic lie on a straight line.

(2.) The eight points of contact of two conics' with their
four common tangents lie on another conic.

Inversely.-~The eight points at which two bicircular quartics
having the same double point, come in contact with their four
common tangent circles passing through the origin, lie on a
third bicircular quartic having the same double point.

(3.) If two vertices of a triangle move along fixed right
lines while the sides pass each through a fixed point the locus
of the third vertex is a conic section. .

Inversely—(a)—1f a system of three intersecting circles
* moves so that two of cither set of the points of intersection
move along two fixed lines and the circles each pass through a
fixed point, the locus of the third intersecting point of the
system is a bicircular quartic.

Inverscly—(6)—A system of three circles each passing
through a fixed point and also through the point of intersection
of two fixed lines, along which two of the points of intersection
of the circles move; the locus of the third point of intersection
is a bicircular (]lldl‘tlL

(4.) If A, B, C be three conics having each double contact
with S, a fourth conic, and if A and B both touch C, the line
joining the points of contact will pass through an intersection
of common tangents.

Inversely—Three nodal, bicircular quartics, A, B C having
double contact with a fourth quartic S of the same kind, all
having common double points, and A and B touching C; the
line joining the points of contact will pass through an inter-
section of common tangents.

(5.) The locus of the points of contact of tangents to a
series of confocal ellipses from a fixed point on the major axis
is a circle.
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Inversely—Each of a series of /imagons having a common
axis and double point is touched by one of a scries of circles
passing through the double point and a fixed point on the axis;
the points of contact are on the circumference of a circle.

(6.) If an equilateral hyperbola circumscribe a triangle, it
will also pass through the intersection of the perpendiculars.

Inversely —Given three circles through the double point of a
lemniscate, intersecting the latter in three fixed points; three
other circles through the same double point and through the
same three fixed points, and at right angles to the first set
intersect in a common point on the lemniscate.

~ HARMONIC PROPERTIES.

19. If the origin O be considered the vertex of an
harmonic pencil O—ABCD, it is evident that the points A, B,
C, D on the transversal AD will g
have corresponding inverse points
on the rays of the given -pencil.

The inverse of the transversal

AD is the circle passing through

the vertex O, the diameters and

chords of which circle will be cut

harmonically by the rays of the A4 B lc
pencil O—~ABCD and will serve Fic. 4.

to establish -an-harmonic properties in the inverse figures.
Following this line of reasoning, we find by inversion that all
anharmonic points on a conic will have corresponding points
on a cubic or quartic, that all harmonic points on the cubic will
have corresponding points on the curves of the fourth, fifth or
sixth degree, etc. All lines in conics which are cut harmoni-
cally will have -corres'ponding circles iu the inverse figures and
these circles will have harmonic points corresponding to those
in the lines. By inversion, certain forms of these curves with
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their circles and lines will become higher curves with circles
showing corresponding harmonic points, etc. ‘

But since a line in one figure will not always have a cor-
responding line in the inverse figures, the harmonic properties
of the higher curves cannot always be obtained directly, but
may be derived easily from the inverse circles corresponding
to the lines in the lower curves or conics.

20. In the following examples the term “harmonic points
of a circle” is used in reference to the points on a circle
through which an harmonic point may be drawn. The term is
similar to that of “points in involution on a circle” in the usual
applications of that term.

EXAMPLES : )

(1.) If three conics pass through four fixed points, the
common tangent to any two is ¢ut harmonically by the third.

lversely—If three nodal, circular cubics have a common
double point and pass through three other fixed points, the
common tangent circle through the common double point to
any two of the cubics is cut lnrmomm y by the third

(2.) A system of conics passing through four fixed points
meets any transversal in a system of points in involution.

Inversely —A system of bicircular, nodal quartics having a
common double point and passing thyough three other fixed
points is cut by any transversal or circle through the double
point in a system of points in involution.

(3.) Given two conics having double contact with each
other, any chord of one which touches the other is cut har-
monically at the points of contact and where it meets the chord
of contact of the conics,

Inversely —~Two nodal, circular LubICS havi ing doub e contact
with each other, one point of contact being a common double
point, any circle through the origin touching one of them and
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cut by the other is cut harmonically at the points of contact
and where it meets the chord of contact.

-(4.) A variable chord drawn through a fixed point O to a
conic subtends a pencil in involution at any point on the curve.

Inversely—A system of circles through the double point of
a nodal, circular cubic and any other fixed point is cut by the
cubic in pairs of points which determine a pencil in involution.

(5.) Given four points of a conic; the anharmonic ratio of
the pencil joining them to any fifth point is constant.

Inversely —Given four circles through the double point and
four fixed points of a nodal circular cubic and intersecting in
any point P on the cubic, the anharmonic ratio of the pencil of
tangents to the four circles at P is constant. Also any line
through the double point cuts the four circles in points whose
‘anharmonic ratio is constant.

(6.) Four fixed tangents to a conic cut any fifth in points
whose anharmonic ratio is constant.

Inversely—Four fixed circles tangent to a quartic and
passing through the origin are cut by a fifth tangent circle
through the origin in ppints whose anharmonic ratio is
constant.

(7.) If A and B be two conics having each double contact
with S, a third conic, the chords of contact of A and B with S,
and their chords of intersection with each other meet in a point
and form an harmonic pencil.

Inwversely —Given three bicircular; nodal quartics A, B and S
having a common double point and A and B each having
~ double contact with S so that the chords of contact of A and B
with S pass through the common double point; then the chords
of intersection of A and B also pass through the common
double point and the four lines form an harmonic pencil.

21. It is now evident that the properties of conics may be
extended to curves of the third and fourth degrees by the
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process of inversion. The inverse curves of the conics will
themselves invert into the form of the original conics or into
quartics. But other forms of the cubic and quartic whose
properties may be obtained through a comparison with the in-
verse conic, will invert into still higher curves. And from the
inversion of the general equation, we judge that particular
forms of these curves will invert into still higher curves.

2.  The method of inversion may be applied to geometry of
three dimensions. All points on a given surface may be in-
verted and produce an inverse surface. Planes, spheres and
various curved surfaces will produce upon inversion forms ana-
logous to the inverse figures of lines, circles and conics. An
interesting series of developments in geometry of three dimen-
sions might be thus obtained. The transformation would be
very similar to those on one plane and furnish no new elements
to the theory of geometric inversion.



THE PNEUMATIC-HYDRAULIC SAND-LIFT.*

By Pror. W. H. EcHoLs, UNIVERSITY oF VIRGINIA.

When sinking the caissons for the foundations of the St.
Louis bridge the engineers made use of what was called the
hydraulic sand-lift, or simply the sand pump, for lifting to
surface the material excavated in the interior of the caisson.
The construction of the machine was in principle quite simple..
A pipe of certain diameter (in the present case the diameter
was 3+ inches), open at both ends, is sunk in the water until
one end is at the bottom where the material is to be excavated,
while the other end projects above the free level of the water
surface just enough to permit of the disposal of its flow. In
the lower end of the pipe or through its side near the lower
end is inserted the nozzle of a smaller pipe, the direction of
which is as nearly as may be in the axis of the larger. This
smaller pipe is connected with a force pump at surface, which
forces through the smaller pipe a flow of water under high
velocity and injects it into the larger pipe at or near its lower
end. The result is a flow of water out of the upper end of the
larger pipe, part of which flow is the water injected by the
pump and part of which is drawn into the lower end of the

*A paper read before the Philosophical Society of the University of
Virginia. ‘ :
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flow pipe from the reservoir in which the operation takes
place; and if there be sand, silt detritus of small grain, etc., in
the reservoir water sucked into the lower end of the flow pipe
this will be carried to surface and discharged there also.

The principle of the action of the water jet in giving motion
to the column of water in the flow pipe is not so simply de-
“termined. It appears that the discharge of the jet of high
velocity into the larger volume of liquid of comparatively low
velocity is, by reason of the viscosity of the water, rapidly
spread out laterally. This lateral spread being confined by the
walls of the flow pipe serves as a sort of fluid piston through
which the kinetic energy of the jet is transformed partly into a
static lifting pressure on the overlying column and partly into
the kinetic energy of the overflow. It is clear that the action
of the pump depends upon the Ainetic energy of the injected
mass of water which is utilized through the viscosity of water.
The efficiency of the machine depends upon the completeness
with which the viscosity of the water permits the transforming
of the energy of the jet to that of useful work in the water of
the flowpipe column. This is a function of the size of the pipe
and shape of the nozzle, as for instance flaring the nozzle
should distribute the high velocity water of the jet more
quickly and effectively over the cross section of the flow pipe.

I regret that I am without data on the application and per-
formance of this pump, which has been frequently used in like
engineering constructions since that of the St. Louis bridge.
Mr. R. H. Elliott made considerable use of it in sinking the

cylinders of bridge piers on the Louisville, New Orleans and
Texas Ry., in Mississippi. Trautwine’s Engineer's Pocket
Book states, that, “With a pump pipe of 33 inches bore, and a
water jet of 150 lbs per sq. in., 20 cubic yards of sand per hour
were raised 125 feet. * * * A jet of air has also been
successfully used in the same way, as at the New York sus-
pension bridge, etc.”
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A water jet under 150 lbs. intensity of pressure means a
statical head of 345 feet and a corresponding velocity of about
150 feet per second lineal discharge of jet. The lift of 123
feet, means of course the lift of the sand through the whole
length of the pipe. The lift above the free level surface is not
given.

The second part of the quotation introduces the subject im-
mediately in hand. If a jet of air be used instead of water, the
discharge of sand, water and air through the flow pipe follows
in a manner similar to that when water is used.

To the aparatus described below, the name Hydro-
Pneumatic Lift, has been applied by Mr. Elmo G. Harris, who
experimented with it while sinking the piers for the foundation
of a bridge over the Arkansas River near Pine Bluff.

Mr. Harris employed an iron pipe of 3 inch bore, 20 feet in
length. About 6 inches above the lower end of the pipe an
inch pipe was let into the side of the 3 inch pipe and «f right
angles to it.  The flow pipe was allowed to rest directly on the
sand, at the bottom, with its own weight in 16 feet of water;
thus the upper end of the pipe was four feet above free surface
level. A flexible hose was attached to the inch pipe and an air
supply driven through it by means of an ordinary force air
pump which was used for supplying the air for a diver's helmet.
The result was an abundant discharge of water and sand from
the flow pipe, intermingled with air. As the flow pipe sunk in
the sand at the bottom it was moved about from place to place
over the area to be excavated.

Mr. Harris used no means of measuring the quantities of air
supplied nor water and sand delivered. He merely states that
he estimates the discharge to be about equal parts of sand and
water. ‘

If this be true, then as an excavator or dredge of river sift,
sand, mud or any ordinary sedimentary detritus we have no
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superior.  Its value will be found not only in the construction
of bridge foundations, in dredging caissons, etc., but also in the
larger operations of dredging river channels, harbor bars and
the like. A valuable application in the industrial arts would be
the raising of liquids through means of a pump without valves,
and to which the aeration from the air used would be no
injury, whereas the liquid or water injector would dilute and
otherwise impair.  Such might be pumps for raising, through
low lifts, acids, beer, molasses, etc.

The idea of such a lift is not a new one. In Callon’s
Lectures on Mining delivered at the School of Mines in Paris
(see English translation, Paris, 1876, pp- 307—308), in his de-
scription of Triger's method of sinking a mining shaft through
very agniferous strata at Chalonnes, by means of a pneumatic
cylinder, he gives the following design for expelling water and
sand from the lowest compartment (see also diagram of Triger’s
cylinder, Trautwine's Pocket Book, p. 648).

A pipe is run down inside the cylinder from surface to its
bottom, in the lowest compartment there is a cock for the
admission of air.

w9k Desides the details given above we may mention -
the contrivance by means of which the pit can be kept dry, in
certain cases, without requiring to increase the pressure of the
air in the interior, to the whole extent due to the pressure of
the water. The tube A allows the water to flow out as it ac-
cumulates and is acted on by the greater pressure of air in the
shaft. The ascending column of water acts like a blowing
machine, drawing in air by the cock B, which is opened to a
suitable extent. The effect of this aspiration is to change the
mass of the liquid into a kind of froth having a less density
than water, thus allowing it to be raised to the surface where it
flows out. * * Another artifice, somewhat similar to the
above, consists in employing the tube not for the exit of the

water which cannot escape through the surrounding ground,
but for getting rid of the solid matter itself. It is possible with
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very running sands, to establish a current of air in the tube
which carries up the sand and water together to the surface”.

My attention having been called to this pump by Mr. Harris,
I determined to make a series of experiments on a small scale
for the sake of the theoretical interest which they might afford
as well as for the practical bearing their results might have on
the action of the machine on larger scale.

I propose now to present the explanation of the underlying
principle of the action of the pump, the results of one series of
experiments on a particular case and to exhibit by actual ex-
periment the pump in operation.

It is evident in the beginning that the cause of the action of
the pump under the air and under the water motor must be
entirely different. The latter, acting through its Ainefic
energy, which. it communicates to the water in the flow pipe
through fluid friction, meust be injected with high velocity; while
the former acting through its potential energy alone (velocity of
injection plays no part, at least no appreciative part, in the
working of the pump in so far as its kinetic energy is con-
cerned) need only to be delivered in sufficient quantity at a
certain depth below free surface level.

Referring to Fig. 1., where are represented seven different
stages of the action of the pump; consider, first, pipe I, in
which we have a vertical cylindrical pipe open at both ends
submerged until the lower end is & units below the surface of
the water in the reservoir, while the upper end stands 7 units
above that level.

Insert a bubble of air (whose volume is something greater
than that of a sphere whose radius is the pipe-radius) in the
tube as represented by 1 in pipe II. The pressure on the base
of pipe Il from the reservoir side is the same as that on the
base of pipe I, in order therefore that equilibrium may exist in
11, there must be the same weight of water in II that there is -
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in I (less the weight of the air in the bubble), provided no flow
of water takes place around the bubble.

The weight of an air bubble will be neglected in comparison
with the weight of an equal volume of water, since the latter is
773 times as heavy as the air. This being the case, the free
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level in tube II must stand above the free level H in the
reservoir by an amount such that the volume of water in.II
“which is above H, is equal to the volume of the bubble 1.

If the bubble filled the tube completely it would remain
stationary where it is, in equilibrium, transmitting the pressure
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unchanged between the liquid above and below it. However,
the bubble never completely fills the tube, but is always
bounded by a thin film or skin of liquid which lines the pipe
around the bubble, so that there is always a thin liquid com-
munication between the water above and that below the bubble.
This being the case, there will be a slow transfer through this
communication of the liquid above to that below the bubble, in
the effort to restore the equilibrium of the water columns,
which is accompanied by a corresponding slow subsidence in
the free level in the tube, which in turn gives rise to an un-
balanced upward pressure on the bubble equal to the weight of
water transferred from above to below it. The bubble will
then slowly move up the tube. The loss by leakage of the
liquid around the bubble is partly restored by the expansion of
the bubble as it rises, which restores the free level in the tube
in some degree. This leakage is very small, under the circum-
stances which we are now considering, for glass tubes, as the
sequel will show. It plays no part appreciably in explaining
the subsequent action of the pump and is introduced now to

merely account for the fact that the bubble will slowly creep
up the tube.

So soon as I is out of the way and has reached a position
such as it has in pipe III, insert another bubble 2, with the
result that the volume of water which is above- H in pipe I1I is
now equal to the volumes of bubbles 1 and 2. Continue to
insert bubbles 3, 4, etc., until as in pipe IV the volume of the
bubbles in the pipe is equivalent to the volume of the pipe of
length /%, when the free level of the liquid in the pipe is at its
upper end or the pipe stands full.

The insertion now of another bubble 5 causes a discharge of
water from the summit of the pipe whose volume is the volume
of bubble 3. The displacement of this water, leaves the
contents of the pipe unbalanced and the whole pipe column is
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driven upward with a constant pressure equal to the weight of
a volume of water equal in volume to bubble 5; so that all the
water in the pipe above bubble I is driven out with an ac-
celerated velocity, until finally bubble 1 itself escapes, when
equilibrium will be restored by the free level in the pipe VI
standing above H at such a height that the volume of water
between these levels is equal to that of bubbles 2, 3, 4 and §
together.

If now instead of ceasing with bubble 5, we continue to
supply with more or less regularity bubbles 6, 7, 8,9 and so
on, until there are at all times 7 bubbles in the pipe, the
volume of any m of which is equivalent to the capacity of a
length of pipe /7 then the contents of the pipe are driven up-
ward at all times by a constant pressure which is represented
by the weight of a volume of water equivalent to the volume of
the remaining 7 - m bubbles.

With the escape of each bubble from the top of the pipe
there is a break in the water continuity of the fow, but if the
supply of bubbles be uniform and steady and such that in the
tube the distance from the bottom of one bubble to the bottom-
of the next is a divisor of d+ ) the length of the pipe; then the
escape of the nth bubble and the insertion of the 2nth are
simultancous and there is no appearance of intermittency in
the discharge of the water.

If the volume of the bubble should not be so large as that of
a sphere whose radius is the pipe-radius, or does not fill the
bore, then the leakage around the bubble takes place rapidly
and the level of the liquid in the pipe is quickly restored to
that of the reservoir. Indeed if the bubble is small with
respect to the pipe there is no appreciable lifting of the level of
the liquid in the pipe, the rise of the bubble is rapid and takes
place in a manner more nearly approximating to that of a
bubble in a large reservoir.
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Returning now to consideration of the pump at work as in
Fig. 1, pipe VII; let there be delivered at the depth &, uni-
formly, A cubic units of air in any definite length of time T,
and a corresponding delivery of W cubic units of water at the
height % in the same time. Let V be the uniform linear
velocity of flow in the pipe and T the duration of flow in
seconds. '

The work done in delivering the A volumes of air at depth
d, is restored in lifting W volumes of water through height /%
and giving it the velocity V, and in addition, part of the poten-
tial energy of the delivered air is dissipated through the
loss of water by leakage around the bubbles, and part of it is
consumed in overcoming the frictional resistances to the motion
of the fluids through the pipe. If we represent the loss of
potential energy through leakage by / and the work done in
overcoming friction by », we have, if v be the weight of a unit
volume of water,

wW
wAd=2wW/i-+3 *v} ~V2+/+r

Where
A+W
- eT’
Y being the area of cross-section of the pipe. The fact that
the bubbles of air have velocity relative to the water makes
this value for V a /izt/e too large in the ordinary cases of steady
flow. The term » is so very small that it need not be con-
sidered with respect to / which is in general not small.
The efficiency of the machine as a pump is
E=;,A]; (h+hy),
kv being the velocity head.
The series of experiments, to the results of which I invite
your attention, consist of some fifty determinations of the
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quantities A, W and T for a particular pipe, the history of
which is as follows.

The unit is the centimetr‘g, linear and cubic. The time was
determined with a stop watch readig to th of one second.

The flow pipe was a glass tube, of the general shape of the
tube marked 4 in Fig. 2, the diameter and cross-sectional area
of which were determined by filling the tube with water for
97.9 c. of its length, measuring the volume of the water and
computing the diameter and section. The amount of water
used was 39ic. c., giving a section of 0.4035 sq. c., a diameter
of 0.7168¢c. The upper end of the tube was turned to a wide
flare and the lower end slightly flared to a tapering funnel to
better receive the air bubbles. The length of the pipe Z+d
was 60 c.

The most complete set of determinations were made with
h==12 ¢. and d=48 c., or one-fifth of the pipe above surface
level. ‘

The air was delivered at the depth of 48 c. uniformly and
steadily by aid of the auxiliary apparatus exhibited in Fig. 2.,
which consisted of a pair of graduated flasks A and B, which
were scaled to read cubic centimetre contents. A was filled
with water and tightly corked. Through the cork passed two
tubes, 1 opening freely in the air outside and also inside at a
depth ¢ below the level of the water in A\, 2 passing from the
bottom of A through the cork down through the cork of B,
into B, opening freely. Tube 3 opens freely in B at one end
and freely in the reservoir of water R at the other end just
under the mouth of the flow pipe. The axis of delivery of 3
being horizontal so as to avoid even the appearance of jet
action being considered. The tube 2 acting as a syphon out
of A has a rubber joint provided with one or more set screw
clamps which may be used to regulate the aperture at will or
cut it off altogether if desirable and thus giving a means of
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instantly starting or stopping the flow. During the measure-
ment, the discharge from —2 -
pipe 4 was caught in a
graduated flask, and an

i1

! =
auxiliary water supply kept -):4 N i
the level of the water in L ile€
the reservoir at a constant 3 E
elevation. The capacity of s ¥

A and that of B was some-
thing over 2000 c.c.

It is evident that when
the syphon 2 is running
and the air being delivered
in R, the intensity of
pressure throughout the air
space in B is & hydrostatic
units, so that the water ’ 4
flows out of A into B under
a static head of pressure

a—c—d or b—d,
which is constant, and in
this particular experiment Fic. 2.
was 104 c. Therefore the number of c.c of air delivered under
the flow pipe 4 is equal to the number of c.c of water passed
from A to B (the change in air volume being inappreciable).
The velocity of this uniform flow was regulated by the clamp
on tube 2.

An experiment consisted in starting the flow until all the
tubes were full, clamping the rubber connection in 2, reading A
and B, springing the watch and releasing the tube at the same
instant. The flow of 4 was caught. The end of the experi-
ment consisted in merely clamping the tube and stopping the
watch simultaneously, and the readings being made at leisure.
These details are entered into with minuteness 1n order to

show how nearly the accuracy of the results may be de-
pended on. '
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In the following table the column A contains the number of
c.c of air delivered per second; as computed from the quantities
Qa Qw which represent the total number of c.c of air delivered
and water discharged during T seconds respectively.

TABLE I.
12 c¢m. out and 48 em. in the water.

No. | A | W | Qo | Qv | T
o 18.7 | 20.6 1350 1480 = 72
2 | 192 | 205 1500 1600 78
3 | 193 | 200 1450 1sco | 75
4 | 103 19.9 1600 | 1630 | 82
5 19.0 10.9 1600 1670 | 84
6 19.0 19.6 1500 1550 79
7 16.8 19.6 1425 1660 . 83
8 146 1 187 1500 1920 = 103%
9 | 152 | 186 1550 1900 1023

10 | 187 18.3 1400 1370 75
11 2.1 | 170 1600 2130 = 12§
12 1.0 | 164 1500 2200 136
13 7.6 15.0 1350 2600 178
14 7.9 15.0 1350 2530 170
13 7.1 14.0 650 1270  9I
16 6.2 13.6 550 1210 So%
Iy 5.9 13.4 500 1140 85%
18 5.7 13.4 500 1180 87
19 6.2 13.3 ' 1000 2140 | 161
20 6.0 13.3 . 1000 2200 = 166
21 6.5 13.1 | 1250 2530 193
22 6.4 126 1250 2450 1933
23 5.5 12.1 | 1600 3510 291
24 5.3 I1.4 575 - 1330 108
25 5.0 1L2 400 880 79
26 3.7 i 87 . 6oo 1400 161
217 3.1 | 82 900 2350 283
28* 29 | 59 1225 2450 420
209* ‘1.5 3.1 270 660 181
30% o9 | 1.8 600 1180 658
31 04 | 0.3 250 220 634
32 0.26 ¢ 0.0 200 o} 755
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The discharge from the flow pipe was uniform and steady
from 1 to 26 inclusive. In 27 a slight wavering of the contents
of the column could be occasionally observed showing that this
was just at the limit of steady flow. A slight further constric-
tion of the clamp gave No. 28, which was perfectly regular and
periodic, the discharge occurring at the uniform rate of 22
strokes per minute throughout the experiment. No. 29 was
regular and periodic, discharging at the uniform rate of 13
. strokes per minute. The discharge of No. 30 was periodic
and very slow, the strokes were not counted. No. 31 was
irregular, some strokes discharging water and others failing to
do so. No. 32 was so adjusted that the supply of air was just
sufficient to keep the water level in the flow pipe at its summit;
thus the number of c.c of air 0.26 represents just the leakage
for this particular experiment. Observe that in the periodic
flows, the discharge computed per second can only be taken to
represent a mean or average velocity of discharge during the
whole experiment.

The periodic discharge appeared to be caused by an in-
sufficient air supply. The bubbles appeared to interfere and
jostle each other in the lower end of the flow pipe funnel and
would accumulate there until the upward pressure was suf-
ficient to drive out the contents of the pipe.

The bubbles which fi//ed the bore were shaped like conical
rifle balls while those which did not fill the bore were len-
ticular shaped revolutes whose equators were horizontal, the
surfaces above the equators being much more curved than
these below. These latter bubbles vibrated with great rapidity
as they ascended the tube, this phenomenon was most observ-
able in the periodic flows, where in the interval between the
strokes the bubbles were nearly stationary in the tube. This
vibration was evidently caused by the /Jeakage around the
bubbles. At no time was there any tendency of a bubble to
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break, but on the contrary the tendency was to unite when they
approached each other closely.

In order to illustrate the results of these experiments more
clearly, T have plotted the rate-flows to axes of A as abscissa
and W as ordinate,
Fig. 3. T have drawn |»
approximately the
locus of mean posi-
tion, by a straight
line between the
points (0.25,0.0) and
(4.0,10.0) and thence
a parabola tangent
thereto.

The equation to
this parabola referred
to tangent and hori-
zontal diameter is

J/?"_‘:' IO,\*Y g 5 110 2 20 A
which transferred to FiG. 3.
A and W axes, gives A in terms of W.
Thus,

A=}(3W++1) } :1+O.II4(W—-IO)2} :

The brace after each term with the high and low limits
assigned, mere indicates the limits for W between which that
term is to be used. The second term is thus not used below
W=10 and the experiments were not carried beyond W=21.
It would be interesting to know whether W would continue to
increase with A or not.

The flow was periodic and regular up to the point marked
% on the tangent, and from this point on it was steady and

uniform.
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The efficiency of the machine as a pump at the maximum
discharge A=19; W=20; V=97}c.: gives, E==37%.

At an intermediate point, A=6.0; W=13.5; V=49c,; gives,
E=62 0/0.

At the limit of steady flow, A=3.1; W=_8.2; V=28ic,;
gives, E=685"/,.

The best results seem to be gotten just at this stage; how-
ever, as a sand-lift velocity of discharge and not pump
efficiency is to be desired.

I may in closing give a few other results which were obtained
with the same pipe 20 cm. out of the water and 30 cm. in the
water. Thus with the same numbering and notation as in
table I, these results are tabulated in table II as follows.

The discharge from 1 to g was steady and uniform. No. 10
was the limit of steady flow. Nos. 11, 12, 13 and 14 were

TaBLE II.
20 cm. out and 30 em. in the water.

No. | A W | Qo | Qw | T
1 | 208 | 178 1500 1280 = 72
2 19.9 | 165 1600 1335 &1
3 21.1  15.5 1500 1100 . 71
4 17.5 ° 15.3 875 765 50
5 | 183 153 | 550 460 30
6 19.4 132 1300 1020 67
7 | 16.2 14.4 1350 1200 = 83
8 145 142 | 1375 1350 95
9 . 137 = 136 1375 1360 100

10 | 142 | 136 1150 1100 | 81
1r* | 55 | 5.2 950 920 176
12* | 62 @ 48 1400 1090 = 224
13* | 41 | 47 650 740 . 158
14 | 3.8 4.1 © 70O 8s0 | 20%
3* 1.0 0.6 500 350 | 539
16 | o041 | 0.0 200 O | 490

regular and periodic giving respectively 27, 24, 23, 22 strokes
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per minute. The strokes of No. 15 were not counted being
very slow. In No. 16 the air delivery was so regulated as to
just keep the pipe full to the top, and therefore 0.41 c.c.s. rep-
resents the leakage in sustaining a 20c. head in the pipe.
Throughout the series the lows A and W are nearly equal, but
that of W increases less rapidly than A.

The limit of periodic flow is much higher than in the first
series. Unfortunately not enough determinations were made
in the region W=10, to admit of drawing the graph of mean
position for A and W, The efficiency as a pump is of course
inferior to that for lower lifts.

A few other determinations were made for other lifts, as
follows : '

wo. e | d | _31 [ Qv | T | S | E
I l 25 | 35 | 500 f 450 | 1 | 064
2 | 25 35 | 1490 1320 | 333 E 22 0o
3 I5 . 45 300 550 ! 061
4 . 30 | 30 375 350 | 20 0.04
5 12 | 48 | 200 510 | | 0.63

Nos. 5 and 3 were steady flows, the others were all periodic,
the number of strokes per minute are recorded under S, in the
cases in which they were counted. The time was observed in
only one case, that of number 2, whose efficiency may be com-
puted. Thus for No. 2 we have A=4.2; W=3.96; V=20.4
and /iy==0.0005 1V?==0.2. whence E==0.60.

The efficiency of the other cases has been computed, with
/iy neglected, and tabulated under E. No. 4 is remarkable.

Finally, in closing, it may not be out of place to make a few
remarks upon the subject of the loss of energy or that due to
the leakage. While the experiments have not been sufficient
in number, nor have they covered a wide enough range, to
prevent any conclusions which may be drawn in regard to this
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matter being anything but premature, the results have sug-
gested to me the following:

The loss of energy appears to be made up of two parts, that
due to the sus taining of a statical head in the pipe above free
level and an additional loss which is a function of the velocity
of discharge.

The first part, which I shall call the potential loss, is de-
pendent on the statical pressure intensity in the column; if
there be no discharge this is %, if there be discharge this is
H=/-/,. This loss can be determined directly by regulating
air supplies which will sustain free levels, in a pipe indefinitely
extended upward, for different values of H, as was done in
Nos. 32 and 16 of tablzs I and II respectively. Here the
losses by leakage are equal to the air supplies. The results
seem to indicate that this loss of work from leakage fs directly
proportional to H, the intensity of statical pressure in the
pipe, or

I'=cH=c(l+ hy).

If 7, be the loss equal to the flow of air which will sustain %

without discharge, then

p
/=1’1(x+7§] .

Neglecting the loss due to frictional resistances in the pipe,
the loss of kinetic energy or that loss which is a function of
the velocity, is

I'=Ad—WH-—cH,
=Ad—H(W+¢).

Referring now to table I, (or better still to a curve of mean
. position) and computing from the data there given, the quan-
. tities V, /y, £ and thence /”, we find that for the steady flows
of uniform V, the series of values of /” are proportional to those
of /%, and therefore to V2 :
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The loss /” is therefore truly a loss of kinetic energy.
If we put l"=—{E— V2,
28
the original equation of energy becomes,
wAd=(wW+c)l+ (wW+ £) g+ 7.
In table I, we have
U=l (1 + y/l)=12+ Ly,

and within the limits of error of the experiment,

117 O 4
/= xoolzv=-5~ V2,

for uniform flow, .. £==0.051.

For flows which are periodic, the law cannot be expected to
hold when the values of V are gotten as above, since the dis-
charge takes place in squirts of high velocity, followed by
longer periods of rest. The actual velocity of mean flow must
therefore be higher than the computed ones, which will bring -
the series for periodic flow under the law also.

In order to derive reliable conclusions from such experiments
a large number of sets should be made upon pipes of  different
diameters, with a larger range of air flows and values of
d and A.

Also different arrangements for introducing the air into the
flow pipe should be employed, it is my opinion that introducing
it into the side of the pipe, as did Mr. Harris, will do away
with periodic flow altogether. 1T distinguish between periodic
flow caused by accumulations of air in the lower end of the
pipe, and intermittent flow as caused by the escape of air in
the discharge. ;

I contemplate, if time be allowed, pushing these experiments
further, and finally comparing its efficiency with that of the
water motor described in the beginning of this paper.



EDITORIAL NOTE.

It has been decided to discontinue the publication of this
Journal andA its issue ceases with this number, which closes the
first volume.

We close the first volume and cease the publication with
_ considerable regret, yet with no small degree of satisfaction,
believing as we do, that as a ]ournai of Elementary Mathe-
matics it has accomplished fairly well the object which it had
in view.

Had it done nothing more than to put into English words
the papers of Bolyai and Lobatschewsky its life had been well
lived. We believe that the time will yet come when the seed
thus sown will bear its share of fruit in the advancement of

sound geometrical teaching in America.
W. H. E.
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21.

A horizontal beam span a, resting on two supports at ends, is
loaded so that the load per running foot varies as the square of
the distance from one support. Find the tangent to the elastica
at each end of the beam and the maximum deflection and that
at the center. [7. U. Tayior.]

SOLUTION.

[f #=the pressure at the distance of a unit from a support,

at the distance 2, the #z®. The whole load is
ffuzzdz:v}uz“.

and the center of gravity is

»
Z
‘ ntdz.z

from the support.
Let v be the distance of any vertical section of the load from
the middle of the beam, and y= the deflection. Then E and I
having the usual meanings, taking moments about the outer

extremity of &
d*v  aud

-

(1) ' EI(‘“Z,J;_,’—'—”:é 2'4 —t(da—x)du(Sa—x)>
Integrating once and noticing that when x==0, dy/dx=0,
d 5 . 5
(2) Elgiz~igzta4x+ dou(Fa—x)—iowgud.
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When xv=3a, (2) gives
El dy/da=1}izua’.
Equating the dexter of (2) to zero,
L(ba—x)'—ta' (ha—x) + risd=o0,

gives the maximum deflection.

Integrating (2) and noticing that when w-—ia y—o
(3) Ely=gsua‘s’—ztsu(Fa—x)S—1isona’yx—ydisyual.

When a=0,

1124°
Y= 4608ET’
the required deflection. [ Williamn Hoover.]
23.
Integrate
‘ d*u I

dvdy” (142 —U/zs%'
‘ [(G. H. Harvill]
SOLUTION.
Put 1+ p*=4, and then integrate with respect to . Then
ar_
dy~ b(6+x%)2
Put 1+a’=a, and integrate with respect to . Then

S
f<x+w)<a+v ¥
xfz(zz——c)
where a—1=c.
Whence finally



EXERCISES.

28.

The center of an equilateral triangle circumscribed to a
parabola is the orthocenter of the points of contact.

[ Frank Morley.]
29.

A triangle is inscribed in a parabola having its vertex at the
point of contact of the tangent parallel to its base. In either
of the segments made by its sides, another triangle is similarly
inscribed. Show that the former triangle is eight times the

latter. [W. B. Richards.]
30.
Two conics which pass each through the focus of the other
have a common auxiliary circle. [H. B. Newson.]
31.

A parabola touches the double tangent of a fixed cardioid.
Show that the eight points of intersection of the curves lie on
two circles; that the circles meet on a fixed circle; and that the
radical axis of the circles is parallel to the axis of the parabola.

[ Frank Morley.]
32.
Integrate
¢ sin ¢ dg
(a+& cos¢)t
[G. H. Harvill.]
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33.

Through a fixed point and the cusp of the cissoid of Diocles,
three and only three circles can be passed cutting the cissoid
at right angles; and these three points of intersection are
collinear. : [H. B. Hall]

34.

Let I, I, I, be the escribed centers of a triangle Ay, Ay, As
Let the lines joining any point O to the vertices meet the
opposite sides at Py, Py, P;. Show that I,P;, IsPs, I,P; are con-
current. - [ Frank Morley.]

35.

Required the volumes cut out of a cylinder with radius 7,
by another cylinder with radius #, the axes making with each
other an angle #=43". [G. H Harvill]

36. :

The locus of the middle-points of the intercepts on a pencil
of lines by two given lines is an hyperbola ‘whose asymptotes
are parallel to the given lines. [H. B. Newson.]

37.

Given two con-nodal tri-nodal quartics, four conics can be
passed through the three common double points and touching
each of the quartics and their eight points of contact lie on

another con-nodal tri-nodal quartic.
[ Annie L. Mackinnon.]
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