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TRANSLATOR'S INTRODUCTION. 

Through all its editions up to the last, America's favorite 
geometry. Wentworth's, taught in all seriousness the following 
proposition (see 3d edition, 1887, §387, page 224): To in­
scribe a regular polygon of any number of sides in a gz"1 len 
circle. But in this, as in some other respects, the book was 
only more than two thousand years behind the times. Euclid 
would have smiled at the unconsciousness with which this 
American Jonah swallowed his impossible whale. Euclid 
could inscribe regular polygons of 3. 4. S. I5 sides or numbers 
obtained by doubling these. Those of 7. 9. II. J 3.[ 4 sides no 
man ever could or ever wiU geometrically inscribe. When on 
the evening of March 30th, 1796. Gauss showed to his student 
friend, the Hungarian, Wolfgang Boiyai. the formula which 
gave the geometric illSCription of the regular poly,gon of 17 
sides, it was with the remark that this alone could be his 
epitaph, if it were not a. pity to omit so much that went. with it, 

Was it this break beyond Euclid's enchanted bounds that 
started these nvo young men in that re-sifting of the very 
foundations of geometry whi«:h Ic;:d . to those ~w coftll;.ions 
of the whole subject jn_ .ow •• hr .. other' bU~~i. be 
gianillg to be t.a.upt ill A.:IDerica".~ uli'liftf'$iij,es~. . 

of ~:~ ~l)'aibpl'n'~;Z:U~~'~:~~~~ 
-fterwvd at ;.~: •• I~ ~ .• ~ •. 

:~\~"',,",'" '~'fIt "":<',J':i~(: 
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Simon Kemeny, went first to jena, then to G:ittingen. Here 
he met Gauss, then in his 19th year, and the two formed a 
friendship which lasted for life. The letters of Gauss to his 
friend were sent by Bolyai in 1855 to Professor Sartorius von 
Walterhausen, then working on his biography of Gauss. 

Gauss said that Bolyai was the only man who completely 
understood his views on the metaphysics of mathematics. 
Everyone who met him felt that he was a profound thinker and 
a beautiful character. 

Benzenberg said in a letter written to Gauss in 1801 that 
Bolyai was one of the most extraordinary men he had ever 
known. 

On his retu rn home in l802 Bolyai was made professor of 
mathematics in the Reformed College of Maros-V,'ls·'trhely. 

Here during the +7 years of his active teaching he had for 
scholars most of the present professors in Transylvania, and 
nearly all the nobility of the country. 

Sylvester has said that mathematics is nearest akin to poetry. 
Bolyai's first works published were dramas, and translations of 
English and German poetry into Hungarian. 

I n 1830 he published an arithmetic. Then came his chief 
work, to which he constantly refers in his later writings. It is 
in Latin, two volumes, with title as follows: 

T{;,lltamol jzt1't'ntutcm studiosam ill dL'lIlt'll/a mll/luSt'lis purae, 

ehmcntaris tlC sub!imloris, tl'll'thodo illtuiti,I(}, e'videlltiaqul'lwic 

propria, in!l'oeil/andi. Cum AppmdiCt' triplici. 
Aile/ore ProjL'ssc'1'C /V!at/tes{;'os ct I)ltysias r..711'lIIiacqlfc publico 

,,'rdinaria. 
TOllllts primus. Maras V,',s;'lrhelyini, 18 32 . 

Ta7JZus sUlIJzdus. 1833. 

The first volume contains: 
Preface of two pages: Laton'salutnJl. 
/\. folio table: E'I'p!il'atio sigllorum. 
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Illde.'\.' rerum (I-XXXII). Errata !,XXXIII-LXXIV). Errores 
recmtius de/ecti (LXXIV-XCVIII). 

N ow comes the body of text (pages I 502). Then with 
special paging and a new title page, comes the immortal ap­
pendix compos d by John Bolyai, son of Wolfgang: 

ApPENDIX scient/am spatii absolute 'veram exhibens: a vel i­
tate aut falsilatt' a.xiomatis XI Euclidei (a priori haud unqUa1fl 
decidmda) indepmdt!11Iem; adjecta, ad casllm falsilatis, qllad­
railira circuli geo11tetrica. Auctore JOANNE BOLVAI de eadem, 
Geomeb'aru11t in ExerCitu Ca;saris Regio Austriaco Castrensillm 
Capitaneo.· Twenty-six pages of text, two pages of errata. 

Finally (pages I XVI), in Hungarian, the names of the sub­
scribers, the nomenclature, and additions to this volume by W. 
Bolyai. Then 4 plates of figures. the first 3 pertaining to the 
body of the text, the last to the Appendix. 

It is this Appendix which we now give for the first time in 
English. Milton received but a paltry 5 pounds for his Para­
dise Lost; but it was at least plus 5, . John Bolyai. as we learn 
from volume second, page 384, of the Tentamen, contributed, 
for the printing of his eternal 26 pages, !O4 Rorins 54 kreuzers. 

His father, treating in the body of the work the theory of 
parallels, says, I.e prupos of the systems which are possible when 
we contradict Euclid's axiom XI, uAppendicis Auctor, rem 
acumioe singul.a.ri aggressus, Geometriam pro omni casu 
absolute veram po5uit. quamvis e magna mole, tantum summe 
necessaria, in Appendice hujus tomi exbibuerit, multis (ut 
tetraedri resolutione· generaJi., pluribusque aliis disquisitionibus 
elegantibus) brevitatis studio omissis." 

And a.gain: "NihUominus tamen quaestio suboritur: quid si 
DOvum axioma detue, per quod determiuetur II.' Tentaooina 
iddrco, quae OHm feceram. brev.ter expooenda veniun... ne 
saltern alius quis operam eodem ~"He spre_ks ·iit bis 
sou's beautiful ~tise with aatunl admirati .... ; TblllS. V~. I. 
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p. 502 , Nec operae pretium est plura referre; quum res tota ex 
altiori contemplationis puncto, in ima penetranti oculo .. tractetur 
in Appendice sequente. a quovis fideli veritatis purae alumno 
digna legi. 

And Vol. II, page 380, "Denique ali quid Auctori Ap­
pendicis ... addere fas sit: quo tamen ignoscat, si quid non 
acu ejus tetigerim." 

This wonderful production of pure genius, this Appendix 
which makes all preceding space only a special case, only a 
species under a genus, and so requiring a descriptive adjective, 
Euclidean, this strange Hungarian flower was saved for the 
world after more than thirty-five years of oblivion, by the rare 
erudition of Professor Richard Baltzer of Dresden, afterward 
professor in the University of Giessen. In the second edition 
of his Elemente der Mathematik in 1867, Dr. B~ltzer called 
attention to this re-making of Geometry, and the 'name Bolyai 
was at last given its place in the history of science. Before 
that, the father Wolfgang Bolyai seems to have been the only 
person who really appreciated the work of the son John 
BolyaL He refers to it in a subsequent work printed in 1846. 
U ertan elemei kezdoknek, figures for which, we learn, were 
drawn by his grandson, John's son. Then· comes his last 
work, ,the only one composed in German. entitled: 

Kut$trGrundriss eines Versuchs : 
1. Dil Aritlzmetik, durch zweckmressig construirte Begriffe, 

V01!l eh.1p:JaUdeten und unendlich-kleinen Grossen gereinigt, 
~tQ.lt~hijM lo~isch-$treng darzustellen. 

If: t:~:""r.(il'oml!.trze, die Begriffe del' geraden Linie, der 
.ElMt.,i.: •• rW.,ke-ls aUgemeln, der winkeUo:sen Formen, und 
<del'~~f·d.'<Jr~efschied~nen Arten der Gleichheit It. d. gt. 
~~~'.Ili.:(;~~A~~D~jmmeni soadetn auch ihr Seyn im 

. ··.$tftt'~~ cia.. die Frage, ob zwey von dey 
.,' , 'i;;~" ~1fJ die Summe der innerm 

> ,.," 
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J¥inke! llicht=2R, sich se/me£deJZ oder nie/zd niemand auf der 
Erde ohne ein Axiom (wie Euclid das XI) aufzustellen. beant­
worten wird; die davon unabh<engige G-eometrie abzusondern, 
und eine auf die Ja-Antwort, andere auf das Nein so zu 
bauen, dass die Formeln der letzten, auf einen Wink auch in 
der ersten giiltig seyen. 

Nach einem lateinischen Werke von r829, lVI. Vasarhely; 
und eben da selbst gedruckten ungarischen : 

lVIaros-Vas,irhely, 185 I, 88 pages of text. 
In this he says, referring to his son's Appendix scientiam 

spatii ubsolute veram exhibens; "Some copies of the work 
published here were sent at that time to Vienna, to Berlin,. to 
Goettingen. From Goettingen .the giant of mathe­
matics, who from his pinnacle embraces in the same vie'f the 
stars and the abysses, wrote that he was charmed to see exe­
cuted the work which he had commenced, only to leave it after 
him in his papers." 

On the 9th of March, r832, Wolfgang Bolyai was made cor­
responding member in the mathematics section of the Hun­
garian Academy. As professor he exercised a powerful in­
fluence in his country. In his private life he was a type of 
true originality: He wore roomy black Hungarian pants, a 
white flannel jacket, high boots, and a broad hat like an old­
time planter's. The smoke-stained wall of his antique domicile 
was adorned by pictures of his friend Gauss, of Schiller, and of 
Shakespeare, whom he loved to call the child of Nature. His 
violin \'I'as a constant solace. He died the 20th of November, 
r856. He ordered that his grave should bear no mark. 

His son John died in 1860, seven years before the world 
began to know of his unique and wonderful work. He was 
born at Klausenburg.in Transylvania, the 15th of De­
cember. 1802. 

He studied in oue of the instittltioDS founded in Transylvania 
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by the Imperial Academy of Engineering of Vienna, and 
graduated the 7th of September, 1822, as cadet of engineers. 
The first of September, 1823, he was made second lieutenant, 
and the 16th of June, 1833, he was put on the retired list as 
captain. His profound mathematical ability showed itself 
physically not only in his handling of the violin, where he was 
a master, but also of arms, where he was unapproachable. It 
was this skill which caused his being retired so early from the 
army, though it saved him from the fate of a kindred spirit, 
the lame!1ted Galois, killed in a duel when only 19. Bolyai 
when in garrison with cavalry officers was challenged by 13 of 
them at once. He accepted all, only stipulating that between 
each duel he might play a bit on his violin. He was victor 
thirteen times. 

Beyond the Appendix, whose tl'anslation into English is ht:re 
given, J llhn Bolyai published nothing; and the thousand pages 
of manuscript which he left have never been read by a com­
petent mathematician. They are in the library of the Re­
formed College of Maros-Vasarhely. We hear that he had 

. conceived the project of working out a universal language, 
akin to that which music has, or that of mathematics. 

If in this he was only an anticipator of Volapi.ik, we think 
nothing of it; but it rather seems that he was another Boole, 
and if so, what discoveries in algorithmic logic might iie 

hidden in his papers I 
In 1853 he must have thought of printing part of his mathe­

matical works, for he left parts of a book with the title: 
Principia doctrinae novae quantitatum imaginariarum per­

fectae uniceque satisfacientis, aliaeque disquisitiones analyticae 
et analytico-geometricae cardinales gravissimaeque; auctore 
}ohan. Bolyai de . eadem, C. R. austriaco castrensium captaneo 

pensionato. 
V'indo:l:!'oliae, vel Maros-Vasarhelyini, 1853· 
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To him who hath shall be given, and it would be natural 
enough if the world still gives to Gauss, the greatest and best 
known mathematician of his generation, some of the credit 
which really belongs to the name of Bolyai. On the comple­
tion of his mathematical studies at the university, the Georgia 
Augusta, Bnlyai left Goettingen the 5th of June, 1799. 

From Braunschweig, Gauss writes to him in Klause'1burg at 
the end of the year: 

"I very much regret that I did not make use of our former 
proximity to find out more of your investigations in regard t() 
the first grounds of geometry; I should certainly tht'reby hav'e 
spared myself much vain labor, and would have become more 
restful than anyone such as I can be, so long as, on such a 
subject, there yet remams so much to be wished for. In my 
own work thereon I myself have advanced far (though my 
other wholly heterogeneous employments leave me little time 
therefor), but thi' W?,y, which I have hit upon, leads not so 
much to the .goal which one wishes, as much more to making 
doubtful the truth of geometry. I have hit upon much which, 
with mOSl, would pass for a proof, but which in my eyes proves 
as good as nothing. For example, if one could prove that a 

rectiline'l.l triangle is possible whose conte'1t may be greater 
than any given surface, then am I in condition to prove with 
perfect ri.gor all geometry. Most would indeed let that pass 
as an axiom; I not; it might well be possible, that, how far 
a.part soever one took the three vertices of the triangle in 
space, yet the content was 'ilways under a given limit. I have 
more such theorems. but in none do I find anything satisfying." 

From this letter we see that in 1799 Gauss was still trying to 
prove a pn'ori the eterna.l re(lJity of the Euclidean. system, what 
John Bolyai calls the systell); ~'. Some time in the next thirty 
yeats he comes to Bo.lyai.'s conclusion, for in 1829.he writes tu 
Bess:!!U as follc}ws ; 
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"At times in certain free hours, I have meditated again 011 a 
theme which, with me, is already nearly 40 years old, I mean 
the first grounds of geometry. I do not know whether I have 
spoken to you of my views thereupon. Here also have I much 
still further consolidated, and my conviction that we cannot 
found geometry completely a prim-i, has become, if possible, 
still firmer. Meanwhile, I am still far from attaining to the 
working out of my 11f1:V I!xtmded researches for publication. 
and perhaps that will never happen in my lifetime, for I dread 
the outcry of the opposition if I should express my view;; 
/ltllj,. " 

Later Gauss adds: 
"According to my deepest conviction, the science of space 

has to our science of necessary truths a relation wholly 
I different from the pure science of quantity; there is lacking to 
our knowledge of the former (space lore) throughout, tllllt 

complete persuasion of its necessity (consequently als'o of its 
absolute truth) which is peculiar to the latter; we must in 
humility admit, that, if number is merdy a product of our 
mind, space has also a reality beyond our mind, of which we 
cannot fully foreordain the laws a prion·." 

More than twenty years after this, Gaus!'l heard from his own; 
pupil, Riemann, the marvelous dissertation which to Bolyai's 
spaces, got by denying the axiom of parallels, added as many 
others got by denying the infinite size of the straight line. 

Beltrami showed ("Saggio di interpretazione della geometria 
non-euclidea," Giorm di Matematiche, 1868) that Bolyai's 
geometry in a plane is equivalent to the Euclidean geometry on 
a surface of cohstant negative curvature. Riemann's finite 
space, of positive curvature, was studied by Felix Klein 
(187 1- 2 , Math. Annalen IV & Vl), and by him named Elliptic, 
while Euclid'S, he called Parabolic, and Bolyai's Hyperbolic. I 
notice that our new Century dictionary confuses Hyperbolic 
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with Elliptic geometry, giving to each the definition of the 
other. 

Cayley carried on the subject to trigonometry in an article 
entitled, "On the Non-Euclidean Geometry (Mathematische 
Annalen, v. pp. 630-4, r872(, which begins as follows: "The 
theory of the Non-Euclidean Geometry as developed in Dr. 
Klein's paper "Ueber die Nicht-Euclidische Geometrie" may 
be illustrated by showing how, in such a system, we actually 
measure a distance and an angle and by establishing the trigo­
nometry of such a system. I confine myself to the "hyper­
bolic" case of plane geometry; viz. the absolute is here a real 
conic, which for simplicity I take to be a circle; and I attend to 
points withill the circle~ 

I use the simple letters a, A, .. to denote (linear or 
angular) distances measured in the ordinary manner; and the 
same letters with a superscript stroke, a, At . . to denote the 
same distances measured according to the theory." His 
result is "that the formul::e are in fact similar to those of 
spherical trigonometry with only cos h a, sin h iit etc., instead 
of cos a, sin a, etc." 

In my first paper on the Bibliography of Hyper-Space and 
'Non-Euclidean Geometry (American Journal of Mathem~tics. 
Vol. I, NO.3, pp. 261-276,1878), I mentioned also Refhy's 
article: Die Fundamental Gleichungen der nicht-euklidischen 
Trigonometrie auf elementarem Wege abgeleitet : 

Grunert's Archiv, LVIII, 416; also a number of work~ 
carrying these ideas on into mechanics. 



EXPLANATION OF SIG::\S. 

Thc straigllt ABC means the aggregate of all points situated in 
the same straight line with A and B . 

. Thc sect A B means that piece of the straight AB between the 
points A and B. 

Thc ray AB means that half of the straight AB which com­
mences at the point A and contains the point B. 

TIlt' plattc ABC means the aggregate of all points situated in 
the same plane as the three points (not in a straight) 
A, B, e. 

The hemi-plane ABC means that half of the plane ABC which 
starts from the straight AB and contains the point e. 

A IJ C means the smaller of the pieces into which the plane 
ABC is parted by the rays BA, BC, or the non-reflex 
angle of which the sides rlre the rays BA, Be. 

ABCD (the point D being situated within L ABC, and the 
straights BA, CD not intersecting) means the portion of 
L ABC comprised between ray BA, sect Be, ray CD, 
while BACD designates the portion of the plane ABC 
comprised between the strdights AB and CD. 

L is the sign of perpendicularity. 
II is the sign of parallelism. 

L means angle. 
rt. L is right angle. 
st. is straight angle. 
<0 is the sign of congruence, indicating that two magnitudes 

are superposable. 
AB.:\ CD mf'ans L CAB=L ACD. 
J( .~ tneans x <::onverges l;oward the limit a. 

is triangle; 
ortne<ilusthe (oircumference of the ]circ!e of radius. r. 
0 r tne"anstbe areaoLthesurfaceof the CIrcle of radIUs r. 



The Science of Ahsolute Spaee. 

t. If the ray AM is not cut by the ray BN, situated in 

J PN\ 
1\ 
c~~ ,i. A", \1 

IB 
E ' 

the same plane, but is cut by every other ray BP 
comprised in the angle ABN, we will call ray BN 
parallel to ray A lVI, that is to say we will have BN 
HAM. 

It is easy to see that !Iure is mu slICit I'll)' 

and ollly one, passmg through any point 13 (taken 
outside of the straight AM), and that the sum of 
the angles BAM, A BN cannot exceed a st. 
Because, in moving BC around 13 until BA;\}-I 

ABC=st. L, there will be an instant where ray 
FIG. 1. BC will commnlCt' not to cut ray and it is 

then that we have BC il AM. It is clear, at the same time, 
that BN it EM, whatever be the point E taken O'J the 
straight AM. 

If while the point C goes away to infinity on ray AM, we 
take always CD=CB, \ve will have constantly CBD=CDB 

::\BC. Now NBC:"O; therefore also ADB=O. 
'2. If BN AM, we will have also CN II AM. Take 

D any point of MACN. If C is on ray BN, 

ray BD will cut ray AM, since BN II A:V1. 

Therefore ray CD win also cut ray AM. If 

C is situated on ray HP, take BQ ii CD; BQ 

will fall within the LABN (§I), and conse­

quently \viH cut ray AM; therefore ray CD will 

also cut ray AM. Therefore every ray CD (in 

ACN cuts, in each case, the ray AM, without 

.p eN itself cutting ray Therefore we 

FIG. 2. CN 
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8. If BR and CS are each II AM, and C is not situated 
on the straight BR, then ray BR and ray CS do not intersect. 
Because if ray BRand ray CS had a common point D, then 
(~ 2) DR and DS would be each II AM, ray DR 0 I) would 
coincide with ray DS, and C would fall on the straight HR, 
which is contrary to the hypothesis. 

4. If MAN>.MAB, we will have, for ev~ry point B of 
M ray AB, a point C of ray AM, such that 

k-----p BCM=NA~t 
For, (§ I), we may draw 13D so that 

BD.\I >NAM, aridmakmg l\lDP=-;MAN, 
13 will be contained in N AD P. If there 

A i""'--------N 
fore we carry NAM along AM, until ray 

c 1-_..;;13z-__ _ 

FIG. 3. AN arrives on ray DP, ray AN will have 
necessarily passed through 13, and somewhere we have: had 
BCM:=NAM. 

F 

A 

5. If BN II AM, there is on the straight AM a point F sucli 
N that FM= BN. For we can get (§ I) BCM:::: 

CBN, and if CE=CB, it follows that EC~BC, 
whence 13EM< E13N. Move the point P on EC. 
The angle BPM, for P near E, will commence by 
being < the corresponding angle PBN, and for 
P near C, it will finish by being > PBN. Now 
the angle BPM increases continuously from BEM 
to BCM, since (§ 4) there exists no angle >BE11 
and < BCM, to which BPM can not become 
equal. Likewise PBN decreases continuously 

G from EBN to CBN. There is therefore on EC a 
FIG. 4- point F such that BFM=FBM. 

(). If BN II AM and E any point of the straight AM, and 
G any point of the straight BN, then GN II EM and EM II GN. 

Because we have (§ I) BN II EM, whence (§ 2) GN II E1\1. 
If now we make (§ 5) L BFM=LFBN, then MFBN"f'NBFM, 
and consequently, since BN tIFM, we have also FM II BN, and 
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from what precedes EM II GN. 

7. If BN and CP are each II AM, and C not on the straight 
B)J, we shall have also BN II CPo 

N,/ jM\1 P The rays BN and CP do not intersect '(§ 3)' 
Moreover, AM, BN and CP either are or are not 

I D in the same plane, and in the first case, AM 

V j either is or is not within BNCP. 
I \ 1. If Al'vI, BN, CP are in the same plane, and 

B A c AM falls within BNCP, then every ray BQ drawn 
FIG. S. within L)JBC will cut the ray AM somewhere in 

D, sinc'e BN II AM. Moreover, since DM II CP (§6), the ray 
DQ will cut the ray CP, therefore BN ii CPo 

2. If BN and CP are on the same side of AM, one of them, 
for example CP, will be contained between the two other 
straights BN, AM. 

)Jow, every ray BQ within LNBA meets the ray AM; con­
M sequently it also meets CPo Therefore BN II CPo 

3. If the planes MAB, MAC make an angle, 

then CBN and ABN can have in common nothing 

but the straight BN, while the straight AM (in 

ABM) will have nothing in common with the 

ray B:\', and in consequence, also i\BC will have 
nothing in common with the straight AM. 

Now every hemi plane BCD, drawn through the ray BD 
(situated in LNBA), will meet the ray AM, since 
ray BQ meets ray AM (as BN II AM). Therefore 
in revolving the hemi-plane BCD around BC until 
this hem i-plane begins to leave the ray AM, the 
hem i-plane BCD will come into coincidence with 
the hem i-plane BCN. By parity of reasoning this 

13 c same hemi-plane will come into coincidence with 
FIG. 7. herni-plane BCP. Therefore BN is in the plane 
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HCP. Moreove-r, if BR II CP, then (AM being also II CP) BR 
will be by the same reasoning, in the plane BAM, and also 
(since BR II CP) in the plane BCP. Therefore the straight 
HR, being common to the two planes MAR. PCB, is identical 
with the straight BN. Therefore BN II CP.* 

I f therefore CP II AM, and B exterior to the plane CAI\-!, 
then the intersection 13M of the planes BAM, CAP is II at the 
same time to AM and CP. 

8. If BN II CP and LCBN=LBCP, and AM (in NBCP) 
is -'- the sect BC at its mid point. then BN II AM. 

N M p For, if ray BN met ray AM, then ray CP 
would also meet ray AM at the same point 
(because MABNWOMACP), and this would be 
common to the rays BN, CP themselves, while on 
the contrary BN II CPo Moreover every ray BQ 
interior to LCBN meets ray CP; therefore also it 

A c 
FIG. 8. me~ts ray AM. Consequently BN II AM. 

9. If BN II AM. and MAP..L MAB, and the dihedral 
LDNBA of the planes NBD, NBA 
(prolonged on that side of ~IABN where 
MAP is) is <rt. L, then ~IAP ancI NBD 
intersect. 

Make LBAM=rt. L. and AC..L BN 
(whether or not C coincides with B), and 
CE ..L BN (in NBD). 

FIG. 9· We shall have by hypothesis LACE 
<rt. L, and AF (..1- CE) wiJ.l fall within LACE. 

Let ray AP be the intersection of the hemi-planes ABF, 
AMP(which have the point A c;ommon). We shall have (since 
BAM ...L MAP) LBAP=LBA.M=rt. L· 

"In placing this third case before the other two, these could be demon­
strated with more brevity and elegance, like case 2 of §ro. (Author'8 note., 
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If nmv we move the herni-plane ABF around the fixed points 
A and B until it coincides with the herni-plane AB~I, then ray 
AP will fall on ray A~[, and since AC _1_ BN, and sect AF< 
sect A C, then sect . .\ F will have its extremity between ray B:\ 
and ray l\:\[, and consequently BF will fall within LAB,:\". 
:\ow, ill tlzis position, ray BF will meet ray AP (since B~ ii 
.D1); therefore ray AP and ray HF intersect also in tlte 
original position, and the point of meeting is common to the 
hemi-planes :\fAP and NBD. Therefore the herni-planes 1tAP 
and NBD intersect. From this we may deduce that the hemi­
planes :\1A P and :\BD intersect whenever the sum of the 
dihedral angles which they make with :,\1 A B is < rt. L-

10. If B:\ ! A}f, and CP A}f, and LABN=LIL\:\[ and 
LACP=LCX\I, then also 13:\ CP and LBC:\=LBCP. 

ER AM. 

S For, either the planes :.\1..:\ B) 

A 

FIG. 10. 

P :\f A C make an angle, or they 
form one and the same plane. 

r. In the first case, draw 
the hemi-plane QDF .L sect 
AB at its mid point. Then we 
will have DQ.L AB and con­
sequently DQ AM (§ 8). Like­
wise if hemi-plane ERS is _1_ 

sect AC at its mid point, 

Consequently (§ 7) DQ •• ER. 
Hence (§ 9) the hemi-planes QD F and ERS intersect, and 

have (§ 7) their intersection the ray FS Ii DQ. :\1oreover 
since BN ' DQ. we have also FS Ii BN. Besides for every 
point F of FS we have the sects FB=FA=FC, and so the ray 
FS is in the hemi-planeTGF ..L sect BC at its mid point. Now 
since FS, BN we have (§ 7) GT EN. In the same way 
GT II CP. But GT ..L sect Be at its mid point. 
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But GT J.. sect BC at its mid point. Therefore TGBN = 
TGCP (§ I), and BN II CP and LCBN=LBCP. 

2. If BM, AM, and CP are in one and the same plane, let 
FS be exterior to this plane and FS II AM, and LAFS= 
LFAM. Then from what precedes, FS II BN, FS II CP, 
LBFS=LFBN, LCFS=LFCP, consequently BN II CP and 
LCBN=LBCP. 

11. Consider the aggregate of the point A and all points 
such that for anyone of them B, when BN II AM, also LABN 
=LBAI"f, and designate this aggregate by F; and caUL the 
intersection of F with any plane drawn through the 
straight AM. 

F has a point, and one only, on every straight II AM; and L 
is divided by AM into two congruent parts. 

Call the ray AM the a:>:is of L. Evidently, in anyone plane 
passing through the straight AM, there is for the axis ray Aj\l 
a single line L. Call every line L so defined, the L of ray AM 
(in the plane, of course, that onp. considers). By the revolu­
tion of L around the straight AM we generate the F of which 
ny AM is ~alled the axis, and which is,' reciprocally, tlu F of 
the a:l(z's ray AM 

12. If B is any point of the L of ray AM, and BX II AM 
and LABN=LBAM (§ II), then the L of ray AM and the L , 
of ray BN coindde. For suppose L' the L of ray BN. Let C 
be any point of L', and CP II BN and LBCP=LCBN (§ II) . 

. Since BN II AM and LABN=LBAM. therefore also CP II AM 
and LACP=LCAM (§ ro). Consequently, C will be situated 
on L. And if C is any point of L, and CP II AM and LACP 
=LCAM, then also CP II BN and LBCP=LCBN (§ ro); 
therefore C is likewise situated on L' (§ I I ). Thus Land L' 
are identical, and every ray BN (II AM) is a new axis of L, 
and, if its origin is joined with that of any other axis, they make 

equal angles with the joining sect. 
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The same property may be demonstrated in the same 
manner for the surface F. 

13. If BN II AM, and CP II DQ, and LBAM + LABN = 

st. L, then also LDCP+ LCDQ=st. L. 
M 1N L s'o p Q Let sect EA=sect EB. 

and LEFi\I=LDCP (§ 4)· 
Since LBAM + LABN= 
st. L =LABN + L.ABG. we 
have LEBG=LEAF. 

F D 
If therefore we have in 

addition sect BG=sect AF, 
H c then llEBG w;. llEAF, 

R K D LBEG=LAEF and G will 
FIG. 11. fall on the ray FE. We 

have moreover LGFM + LFGN=st. L (since LEGB=LEFA). 
Moreover GNIIFM (§6). 
Therefore if MFRS ,q, PCDQ, then RSIIGN (§ 7), and R 

falls within or without 'the sect FG (unless sect CD=sect FG, 
in which case the proposition would be evident). 

1. In the first case LFRS is not>st. L-LRFM=LFGN, 
since RSIIFM. But as RSIIGN, LFRS is not <LFGN. 
Therefore LFRS=LFGN, and LRFM + LFRS=LGFM+ 
LFGN=st. L- Therefore also LDCP+ LCDQ=st. L-

2. If R falls without the sect FG, then L:~GR=LMFR. 
::\lake MFGN,q, NGHL,q, LHKO, and so on until FK=FR 

or begins to be greater than FR. Then K ° II HL II FM (§ 7). 
If K falls on R then KO falls on RS (§ I). and consequently 

LRFM +,LFRS=L~FM + LFKO=LKFM + LFGN=st. L­
But if R falls within the sect HK, then (as in I) we have 
LRHL+LHRS=st. L=LRFM+LFRS=LDCP+LCDQ. 

14. If BNIIAM. and CPIIDQ. and LBAM + LABN< st. L, 
thcn also LDCP+LCDQ<st. L. 

Because, if LDCP+ LCDQ were not <st. L, this sum (§ r) 
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would be =st. L Then we should have (§ 13) LBAM+ 
LA BN =st. L, which is contrary to the hypothesis. 

15. In consideration of what has been established in §§13 
and J4, 'We will designate by ~' tlze svstern of geometn' 'wlzzelz 
rests 011 tlte Itypotlzesis of tlte trutlz of Euclid'; a:rio1lZ x~, and bv 
5 tlte sJ1stcm founded Oil tlze cOlltral:V Itypotllesis. -

All rt'sltlts cmtllciated without designating eX'Press~y wlletlter 
tlzey belollg to tlte sJ'stem ~' or tlze system 5, should be CON­

sidered as eJl1!JZ~'iated absolutely, illat is true whethel' placed itt 

.Iystelft 2' 07' J~vstt'tlZ S. 

16. If Al\! is the axis of a line L, this line L, in the system 
2', will be it straight -L AM. 

Suppose BN an axis at any point B of L; then 
in 2', LBAM -I LABN=st. L, therefore LBA~I 
=rt. L. 

And if C is any point of the straight AB, and 
CPIIAM, then (§ 13) LACP=LCAM, and con-

A sequently C will b~ on L (§ II). 

FJG. 12. But in S, there exists nowhere on L nor on F 
three points in a straight. For some one of the axes AM, BN, 
CP, (e. g. AM) falls between the others, and then (§ If) 
LBAM and LCAM are each < rt. L 

17. L in S is a line, and F a surface. For (§ II) every 
plane drawn perpendicular to the axis ray AM through any 
point of F, cuts F in [the circumference of] a circle, of which 
the' plane (§ 14) is perpendicular to no other axis BN. If we 
revolve F about BN, any point of F (§ I2) will remain on F, 
and the section of F by a plane not -L ray BN will describe a 
surface. Now, whatever be the points A, B taken on F, F can 
be so moved ill its traN that A falls upon the trace of B (§ 12). 

Thus F IS a uniform surface, a surface which will slide in its 

own trace. 
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It follows (§§ I I and I2) that L is a uniform line, a line 
which will slide on Its trace.* 

18. The intersection of F with any plane drawn through a 
point A of F obliquely to the axis AM, is, in the system S, a 
circle. 

Take A, B, C, three points of this section, and BN, CP, axes. 
AMBN and AMCP make an angle, otherwise the plane de­

termined by A, B, C, (§ I6), would contain AM, which is con­
trary to the hypothesis. Therefore the planes _L the sects AB, 
AC at their mid points intersect (§ IO) in a certain axis ray FS 
of F, and we have FB=F A=FC. 

M~ 
J 

r 
': ~F 

,"7 , 
~' I 

A 
c 

Make A H -L FS, and revolve 
FAH around FS; A will describe a 
circle of radius HA, passing through 
Band C, and situated both in F i\nd 
in the plane ABC; moreover, F and 
plane ABC have nothing common 
but the circle (0) HA (§ 16). 

FIG. I3. It is also evident that in revolving 

the portion FA of the line L (as radius) in F around A, its ex­
tremity will describe the circle with radius HA, 0 HA. 

19. The perpendicular BT to the axis BN of L (drawn in 
the plane of L) is, in the system S, the tangent to the line L. 

N For L has in common with ray BT only the 
point B (§14), But if DQ is situated in the 
plane TBN, then the center of the section 
made in the F of ray EN by the phine 
drawn through BQ perpendicular to TBN 

a 
BL----- (§ 18), is evidently on ray BQ; and if sect 

FIG. 14 . 
T BQ is a diameter, it is clear that ray BQ 

will cut in Q the L of ray EN. 

.. It is not ne;qessar,Y to· ~et the. ~o __ tion to the system S 1 we 
may ea.slly establish that it is w..e absolutely ~.$ ~ 101".1', 
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20. Any two points of F determine a line L (§§ II and 
18); and since (§§ 16 and 19) Lis ..Lto all its axes, every L 
of lines L in F is equal to the L of the planes drawn through 
its sides perpendicular to F. 

21. Two line-rays, L-ray .A P and L-ray BD, in the same 
surface F, making with a third line L, namely with line AB, in­
terior angles of which'the sun is < st. L, intersect. 

p t ~ We shall designate by line AP, in F, the 
: : line L drawn through A and P, and by L-ray , 
I AP that half of this line beginning at A, 

. ; which contains the point P. 
A ~ ow, if A :'II, BN are axes of F, the hemi-

FIG. IS. planes AMP, BND intersect (§9), and F will 
meet their intersection (§§ 7 and II). Therefore, L-ray AP 
and L-ray BD intersect. 

From this it follows that Euclid's Axiom Xl and all the con­
sequences deduced from it in geometry and plane trigonometry 
are true absolutely in F, the lines L playing the role of 
straights. Consequently the trigonometric functions will be 
taken here in the same sense as in ~he system ~'; and the circle 
traced in F and having for radius a piece of line L equal to t·, 
will have for length 2;"(1'; and area of 0r (in F). = 1<r (r. 
desigt:ating the length of tOl in F, that is to say, the known 
number 3.1415926+). 

22. Let line AB be the L of ray A:M, and (' a.point of ray 
A~. Suppose the LOAB (formed by the ray AM and the 
t,.ray: AB), translated· fLrst along the L-ray AB, then rtlong the 
t-ray BA, each way to infinity. The path CD of the point (' 
wiU ·~the line L of ray CIL 

F()t, calling this ll'ttter L',: let Dbe any point of line CD, let 
J;)N<iJ:li.e~ G:M i andB the p<pint of L situated on the straight 

>i~i'~,·Wl!:i • .llrh.v¢IN JI';.~"and LABN=LBAM, and sect 
:,;,;,t'0 ',"' >",'".,1' ., 

. , 
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N p 

L 

D F 

AC=sect BD, and consequently DN II CM 
and LCDN=LDCM; therefore D is on L'. 
Moreover, if D is on L' and if DN II CM, 
and B the point of L on the straight D~, 
we shall have AM II BN, and LBAM = 

LABN, and C~I II DX and LDC\I = 
B E LCDN, whence follows that sect BD=sect 

FIG. 16. .\C, and D falls on the path of the point C. 
Therefore, L' is identical with the line CD. We 'shall represent 
the relation of such a: line L' with L by the notation L',JiL. 

23. If the line L represented by CDF is II ABE (§22); if. 
moreover, AB=BE, and the rays ,AM, BN, EP are axeS, we 
shall evidently have CD=DF. 

If A, B, E are any three points of line AB, and we have 
AB=n.CD, we shall also have AE=n. CF, and consequently (ex­
tending evidently to the case of AB, AE, bc incommensurable), 
AB: CD=AE: CF. The ratio AB: CD is, therefore, independmt 
of AB, and completely detam/tled by A C. 
, We shall designate the value of this ratio AB: CD by the 
capital letter (as X) corresponding to the small Italic (as.t') 
by which we represent the sect AC. 

y 

'24. Whatever be x and ."I. (§ 23), y=xx. 
For, one of the quantities X, )1 is a multiple of the other 

(e. g . .1' is a multiple of .t') or it is not. 
If y=n . .,\·: take x=AC=CG=GH=&:c., until we get AH=v. 
:\Ioreover, take CD II GK II HL. -
We have (§ 23) X=AB:CD=CD:GK=GK: HL, and con-

sequently ~~~ (~~J 11, 

y 

or Y =XlI=Xx. 

If X, yare multiples of i, we shan have in a:ccorda~ce with 
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the above, X=I"\ Y=Ill, and consequently 

n [ 

Y=XIlI=XX. 

This conclusion is easily extended to the case where x and y 
are incommensurable. . 

If q=y-x, then Q=Y: X. 
In the system ~:, for every value x, we have X=r. 
I n the system S, on the contrary, X> I, and for any values 

of AB and ABE there is a line II AB such that CDF=AB, 
whence results AM BN W> AMEP, though the first of these two· 
figures m.ay be any multiple of the second; a singular result, 
but evidently not showing any absurdity in the system S. 

25. In eZlery 1'edzlineal triangle, tlu circles with radii equal 
to its sides are to each other as tilt' sines of the opposite angles. 

A. 

No l~ Take LABC=rt. L, and AM ..L 
I \ BAC, and BN and l'P II ..:\:\1. 
\ Ie We shall have CAB..L AMBN, and 

consequently (since CB -L BA), CB-'­
AMBN; therefore, CPBN..L AMBN. 
Suppose that the F of ray CP cuts the 
straights BN, AM respectively in D and 
E, and the bandes CPBN, CPAM. BNAM 

FIG. r7. along the L-lines CD, CE, DE. Then 
(§ 20) L CDE will be equal to the angle of NDC, NDE, and 
hence=rt. L; we have in the same way LCED=LCAB. 
Now, (§ 21) in l::.CED formed by th~ L-lines, (supposing 
always here the radius=I), we have 

EC:DC=I:sin DEC=I:sin CAB. 

We have also (§2I) 
EC:DC=Q.EC:Q.DC (in F)=Q.AC:Q.BC (§r8). 

Consequently we conclude 
Q.AC: Q.BC= I: sin C'A B, 
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whence it follows that the theorem enunciated is established for 
any triangle. 

26. III all)' spherical triangle, the sines of tIlt' sides are to 
each other as tlu sines of the allgles opposite. 
o Take LABC=rt. L, and CED ..L to the 

E 

B 

FIG. 18. 

radius OA of the sphere. We shall have 
CED ..L AOB, and (BOC being also -'_ to 
BOA), CD _C OB. ~ow, in the triangles 
CEO, CDO, we have (§ 25) 
O.EC: O.OC: O.DC=sin COE: I: sin COD 
=sin AC: I: sin BC. . 

But we have also (§25) O.EC:O.DC=sin CDE:sin CED. 
Therefore, sin AC:sin BC=sin CDE:sin CED. But ('DE= 
rt. L =CIL\. and CED=CAB. Consequently, 

sin AC:sin BC=I:sin A. 
From this follows '!he 'Zvhole of splun'cal trigorwmetr..,1!, 'Which 

is thus established indepmdmt~y of E1Iclt'd's Axiom XI. 

27. If AC and BD are J.. AB and we translate the LCAH 
along the ray .A B, we shall have. designating by CD the path 
described by the point C, 

CD: AB=sin u:sin v. 
Take DE -'- CA. In the 

triangles ADE. ADB, we have 
(§ 25) 

O·ED:O·AD:O·AB= 
sin U: I: sin ~J. 

G F In revolving BAeD around AC, 
FIG. 19- the,point B ?liU describe O.AB, 

and the point D will describe OjED~ 
Designate here by G).CD tbet)iath of the line CD. More­

over, let tl\ere be alllY<lwlygo'n'~' .. "iio~bed in Q.AB. 
Passing;;~ ,~~~>'.,_ .. '~,. wpbmes..L 

0.AB we t:Q~ .. ',~iji'~;~ ~~nuM:ber Q{ 
, ", I, '.' ; ':~, "\, ' 
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sides in 0.CD, and we may demonstrate, as in § 23, that 

CD: AB=DH: BF=HK: FG=. : . , and consequently 

DHt HK+ ... :BF+FG-t ... =CD:AB. 

If we make each of the sides BF, FG. approach the 

limit zero, we have 

BF+FG+ ... ··O.AB and 

DH+HK+ ... ~O.ED. We have 

therefore also O.ED: O.AB=CD: AB. Now, we already had 

O·ED: O.AB=sin u: sin ·V. Consequently, 

CD: AB=sin 7l: sin ". 

If AC goes away from BD to infinity, then the ratio CD: AB, 

and consequently also the ratio sin 11: sin 11 remains constant. 

Now ?I: rt. L (§ I), and if DM II Bi':, l' .:. z. Therefore, 

CD: ..\13=1: sin ,c'. 

We shall designate this path CD by CD ~\B. 

2S. ' If BN II A:\l. and LABi':=LBA:\[, and C a point of 

ray AM, then putting AC=.t' (§ 23) we shall have 

M 
FIG. 20. 

Therefore also 

X -= sin u: sin 11. 

For, CD and AE bell1g _'- B~, and HF _L 
AM, we shall have (as in § 27) 

O.BF: O.CD=sin u: sin 1'. 

Now evidently BF=AE. Therefore 
O.EA : O.DC=s;n u: sin 11. 

But in the F-surfaces of AM and CM. 
which cut AMBN along AB and CG, we 
have (§ 21) 

O.EA: O.DC=AB: CG=~. 

X=sin u: sin 11. 
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2H. If LBAJf=rt. L. and sect.'\B y, and BN II AM, we 
shall have in the system S, 

Y=cotan 1lf. 
For, if we suppose sect A B= 

sect AC, and CP II AM (and 
SQ B~ II CP and LCBN= 
LBCP), and LPCD=LQCD,. 

FIG. 2I. then we can draw (§ 19) DS 

..L ray CD so that DS II CP, and consequently (§ I) DT II CQ. 
Moroover, if BE -'-ray DS, then (§ 7) DS II BN, conse­
quently (§ 6) BN II ES, and (since DT II CG) BQ II ET. 
Therefore, (§ r) LEBN=LEBQ. Let BCF be an L-line of 
BN, and FG, DH, CK, EL, L-lines of FT, DT, CQ, &c. We 
shall have (§ 22) HG=DF=DK=HC; therefore, 

CG=2('H=2 ~'. 

In the same way BG=2BL=2Z. 
~ow BC=BG-GC; so y=z-'v, whence (§ 2+) Y=Z: V. 
Finally we have (§ 28) 

Z= I: sin t ?I, 

V=I: sin (rt. L-! 1/). 
Therefore, Y =cotan t 11. 

:30. It is easy to see (after (§ 25) that solution of the 
M' N problem of Plane Trigonometry, in the 

system S, requires the expression of the 
circle in terms of the radius. Now, we 
are able to obtain this by the rectification 
of the line L. 

Let AB, CM, C'M' be straights J_ 
ray AC" and 13 any point of ray A B. 
We shall have (§ 25) 

sin u:sin ZI=Op:OY, 
FIG. 22. sin 1/': sin v'=Op: Of; 



HALSTlm-BOLYAI: SCIENCE OF ABSOLUTE SPACE. .229 

C sin tf sin ll' , 
onsequently, -;-- --.01'= --;- -,.Q1' . 

sIn v . sIn v 

Now, we have (§ 27) sin 1': sin ·z,'=cos u:cos l{'. 

_ sin 11 sin II' , 
Therefore-- -Ov=- ---- -0 I' . , cos l/ . cos lI' . 

or OJ!: 0.1" -"" tan u': tan u=tan "t': tan zC". 
Take now CN and C:\f' II A B, and CD, CD' L-lines J~ A B. 

We shall have then (§ 2 I ) 

0)': 0.1"= r: r', whence 
r:r=tan 'Zv:tan z,,' . 

. ~rake p increase from A to infinity; then 'Zi' ~ _ z and w' . zo', 
whence results also r: r=tan z: tan z'. 

Designate by i the COllstallt ratio 

r:tan z (uufcpl'JuIOltof r). 
If we suppose y ,<. 0, then 

y -;~ t. 
tan z 

Therefore 

r i tan z 
y v 

I, and consequently 

From §29, it follows that tan Z=1 (Y - y-I). 

2y 
y_y I I, 

y 

21'.1 i . 
-·-~':'-l . 

. 2y -- I 
I z 

Now, we know that the limit of this expression, for 

'i 
Y :c:: 0, is na:t.-1ogI" Therefore, 

.. _-=-. __ .- - i and consequently 
nat. log I - , 

I="'=2.71828 18-t·, 

a nuro.berwhich presents itself here in a remarkable manner. 
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Designating henceforth by i the sect of which the I=e, we 
shall have 

r=-: i tan z. 

We have found elsewhere (§ 21) 01'=27:'1'. 

Therefore, 
. '(Y yJ' 'l~' vJ 0 1'= 27:'1 tan Z=7:'l -- )=;::z .', -'C' . . e 1-'---( 1 

=7:')~ ___ (y_y __ I) (§ 24). 
nat. log Y 

31. For the trigonometric solution of all right-angled recti­
lineal triangles (whence is easily deduced that of all rectilineal 
triangles whatsoever), in the system S, three equ8.tions suffice. 

Let c be the hypothenuse, a, b the sides of the right angle, 
and Il, {i the angles respectively opposite to a and b. These 
three equations shall be those which express relations. 

I. Between a, c, 11.; ,I' 

F'~~: th;:::::a~~!; ::e ,hall deduce '.1 ~: 
afterward three others by elimination. ~ 

1. From §§ 2$ and 30 we get "r Nt> 

r:sin o:=(C-C 1): (A---A-l)= FIG. 23. 

= Co"'; - e1 J : C,uj --e-1 J ' all equation bet'ween c, a: atzd 11.. 

II. From §27 we deduce (BM being Il rn) 

Now, we 
I: sin .ll=.! 

cos a: sinFi= I: sin 7£. 

29) 
thereforecosfl:sin p= l (A+A-l)= 

, alteq2lafton bet;lf/un ft, /i, and a. 

III. Take, Fila-addll (J;a'~§ ~7), and Fr(.;.'r' 
'WeW~evtdentI)' have (as in §2J:) 
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, 
l7,=HB+ B 1) 
(/.It -, , 

Consequently 

~(C+ C--1 )=((A+A-1).1( 13+ B-1), or 

" (I _..L (a 'II -I (h LJ J 
e 1 + e 'j- 2 Lei+e---j' J e-j+e- j , 

aft equati01I bei7f'ee1l a, b, aNd c. 

If T'1.~=rt. L, and we have /16 ~ fI.(~, then we shall get 
Oc: Oa=r: sin fl., and 

Oc: o (d=/Jr}) =1 :cos II., 

Therefore, designating by 0:\"2, for any value of x, the 
product Ox,O.\', we shall evidently have 

Oa2 + Od2=OC2, 

Now, we have found (§ 27 and § 31, II) 
Od=Qb. t (A + A-I), Consequently 

eel· I a a b b a a-, (' ," ( J2[ 12 [ J" eT-'--e--- j ) =-,- Lei+e--i . e--i-e-j. + i-i-e--i 

another relation between Ill, b, and c, the second member of 
which may be easily put into a form symmetric or invariable. 

Finally, from the equations 

cos 11. cos p 
sin ft=i(A+A-l). sina=HB+B 1), we get (after II) 

( eel 
cot Il cot p=t ' il+e 1 J ' 

~1Z ef$l~'letwem fl, p, lJl71d c. 
3~. . it~m r~mains to show briefly the means of resolving 

pr6ble~m th<t system S. After bavmg expounded this in 
~' ~tnost o-rdiDIiIIYexamples, we shall see finally what 
t~.~";DibWto:', ·ye.' 

, .'-.",,'1;' ,"-".,''''. ;;,,~ 
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1. Take AB a line in a plane, and y j' (;v) its equation 1J1 

rectangular coordinates. Designate by dz any increment of z, 

H B 

N \ 

y 

and by dx, (~I', .dl! the increments of x, of )', 
and of the area u, corresponding to this in­
crement liz. Take 13H ii CF; express (§3 I ) 

BH b f d k 1 j' . fdx . ...... V means 0 V, an see t le zmt! 0 _._-
d.\· • - d)l, 

M·-F'!=:---:!;C,-----lA when dx tends toward the limit zero (which 
FIG. 2+. is always understood when one seeks such 

limits. 

We shall then know the limit of ,c!-:v, and 
BH, 

so tan HBG; and 

consequently (since evidently HBC can be neither nor 
<rt. L, and so is=rt. L), the tangeNt at B of the line BG 
will be determined by means of y. 

II. We can demonstrate that 
dz2 

~iJ>+BH 2 
'-.·.c I. 

Thence we deduce the limit of (iz and from it we get. by 
. dx, 

integration, the expression for.z in terms of .'-. 
Given any real curve, we can find its equation In the 

system S. 
For example, to find the equation of a line L Let ray 1\:\1 

be the axis of the line L; every straight drawn through A, 
other than the straight AM, meeting L (§ 19), the random ray 
CR, starting from a point of ray AM, will meet L 

~ow, if B~ is an axis, we have 
X=I: sin CBK (§ 28), 
Y=cotan t CBN (§ 29), whence 

we get Y=X+ I'XL:1; . 

or y x r;~ 
e i=e-i + \} 

I, 
which is the equation sought. 
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Hence we' get 

2 -'-- X (X~- ) t d ---. I 
,Z 

Now, BdI:i=I:Sin CBN=X. Therefore 
x 

d1' .,--;\-ItA -=:'- (X--r) ~ 

d 2 I+.L --'-- X!!.(X2-r)' 1 BH2---

dz 2 
• X!! (X~- )--1 

BH 2 """ • ,I 

dz-t 
BHc=X.(X!!~I) 

dz l 
;l;': ~ X:l.(X 2-1)-2 

and 

whence. 

integrating, we get (as in §30) 
l 

Z=i(X2- I) 2=i cot CBN. 
III. Evidently. 

du HFCBH. 
ll-X- dz 

If this quantity is not given in y, it is necessary to express it 
~n terms of y, and then we get u from it by integration. 

Putting AB p, AC=q, CD=r, and CABD 
=S, we might show (as in II) that 

ds . 1 - --=- Y, a quantlty equa to 
dq 

1 (~ - ~J whence, integrating, 
'3 p e '+e I ' 

Dc. --:.- D E 

" q 

J 

A p B 

FIG. 25. 

s=i.rn C· -1-e· i) . 
~ight also obtain this result without integration. 
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For example, if we establish the equation of the circle (aftF.:r 
§3I, III), of the straight, (from §3I, II),ofa conic (from what 
just precedes), we could express also the areas bounded by 
these lines. 

We know that a surface t, Iii a plane figure p (at the distance 
q) is to p in the ratio of the second powers of homologous 
lines, that is to say in the ratio of 

• 2 r q q 1 
1 l -+ ,-- J 4' e i e I :r. 

It is easy to see, moreover, that the calculation of volume, 
treated in the same manner, requires two integrations (the 
differential itself being determinable only by integration). 

It is necessary first of all to investigate the volume contained 
between p and I, and the aggregate of all the straights ,,.L p 
and joining the boundaries of p and t. 

We find for the volume of th.is solid (whether by means of 
integration or otherwise) 

[ 24 2q I 
,~pt" .e T -e-T J +tpq.· 

The surfaces of bodies may also be calc~lated in the system 
S, as well as the curvatures, the involutes, the evolutes of any 
lines, 'etc. 

As to curvature, in the system S, either it will be the curv­
ature of the line L itself, or we:. may determine it either by the 
radius of a circle, or by the distance of a .straight from the 
curve III to this straight; and it is e.asy to make it evident, after 
what precedes, that there is not, in a plane any uniform line 
other than L-lines, circles, and the curves III to straights. 

IV. For the circle we have(~in III) d~~ ""':~O.x.whence 
,<{'If: 

(§ 29). integrating, we ~t 
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V. Take u=C\BDC the area comprised 
L-line, AB=r, a Ii to that line CD=v and the 
sects AC=BD=.,'. '- , 

W ell! x 
e have~ 11 and (§ 24) y=rt' i whence dx .' , 

integrating u=rz" [I c "7J 
If -Y increases to infinity, then, in the system S, 

x d 1 . t' - i .:, 0, an consequent y ,,',.0 1'l. We shall 

call this limit the siZ't' of lVIA Hi\'. 

between an 

1.1 ~ 

C D 

A B 
FIG. 26. 

We may see in the same manner that, if p is a figure traced 
on F, the space comprised between p and the aggregate of 
axes drawn through the different points of the boundary of p 
is equal to }p i. 

Let 211 be the angle at the center of the 
spherical calotte z, and p a great circle, 
and .\' the arc FC corresponding to the 
angle If. We shall have (§ 25) 

I: sin It p: a, BC, whence 
a·BC p sin u. We have, besides, 

.'t,=i!~( dx=pdu FIG. 2/. 

:\f oreover, 

2;:' . 

d~ c::.: a.BC, 
d.JC 

dz p2. . . 
.. :cc. . sm 11, and, JIltegratJllg, 

du 2;:-

z=ver _sin u p~. 
2iT 

I magine the surface F on which is situated the Circle p 
(passing through the middJe F of the calotte). Draw through 
AF and AC the hemi-planes FEM, CElVI, perpendicular to F 
and cuttingF <:llang FEG and CE; and consider the L-line CD 
(drawn through C perpendicular to FEG), and the L-line CF. 
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We shall have (§ 20) CEF=u, and (§ 21) 

(d=ver_~illU, whence z=FD.p. 
p 2;:-

Now (§ 21) p=;:-.FDG; therefore 
z=r:.FD.FDG. But (§ z I) 

FD.FDG=FC.FC; consequently 
z=r:.FC.FC=0.FC, in F. 

N ow let B J =C J =1"; we shall ha ve 
(§ 30) zr=z'(Y-YI). whence, (§ 2I) 

0 2r(in F)=;:-i2(Y~. Y l)~. 

M 

We also have (IV) 
02y=;:-iZ(Y~-2+Y 2). 

'::':'-'_-'_Y_--"::--TA",--_~c 
"9<'-

Therefore, 02r (in F)=02)1, and con­
sequently tlte Slf1j'Clce z of tlte segmmt (:f a FIG. 28. 
spit ere is equal to tlze su;:face of tlte cin-Ie dtscri/lt'd witlt tlze 
clzord fc as ?'Ildius. 

Therefore the whole sphere has for surface 

0.FG=FDG.P=P~ 
", 

and tlte suifaces (if spJzerts are to each otlter as tlte st'Cond 
pO'hltrs of their great circles. 

VII. We find in like manner that, in the system S, the 
volume of the sphere of radius x is equal to 

A-;;-z'2( X2- X -2) - 2-;riJx. 

The surface generated by the revolution of 
the line CD around AB is equal to 

1 - (Q" Q?) "1.7:1P '"'-,-- .., 

and the solid generated by CA BDC is equal to 
}r:ip(Q_QI)2. D 

A p B 

We suppose, for the sake of brevity, the FIG. 29. 
method by which one may obtain without integration all the 
results reached from IV thus far. 
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We can demonstrate that tlze limit of e·ve;: .. expression CON­

taining tlze letter i (and consequently founded on the hypothesis 
that a magnitude i exists), 'wlzm i increases to i1Zft"i~y, f{i7les 
the corresponding o:pressioll ill tile system l' (and consequently 
under the hypothesis that a magnitude i does not exist), pro­
vided that we do not meet identical equations. 

But we must be very careful not to get the idea that the 
system itself may be changed at will (for it is entirely de­
termined in itself and by itself); it is only tlli' hypothesis which 
may vary, and which we may change successively, so far as \ve 
are not conducted to an absurdity. In supposing therefore 
that, in such an expression, the letter i, in case the system 5 is 
that of reality, designates the unique quantity of which the I 
has e for its value, if we come to recognize that it is the system 
1', which is really actual, we conceive that the limit in question 
is to be taken in place of the primitive expression. Then it is 
evident that with this understanding, all the fot"jwessiolls 
founded on tlze Jlypot/usis of tlte realit), t'.f tltt s)!stcm S <['ill be 
true absolutely, evert wizen we are complctt'~V igJlOnlllt <£'Iuf/ler or 
not tlze ~ystem l' is tlte system of reali~)!. 

So, for example, from the expression obtained in §30 we 
easily get (either by means of differentiation or othenvise) the 
known value in the system 1', 

0,\,=2;:-.'1', 

From I (§ 3 I) we conclude, by suitable transformations, 
1: sin a=c: a; 

from II we get 
cos (I.. 

.... -;.=1, and consequently 
sm 11 

Il + ;'i= I. 
The first equation of III becomes identical, and so it is true 

in the system 1', although it there determines nothing. From 

the second we conclude 
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Thfse are the known fundamental equations of plane trigo-
110metry in the system ~:. 

Moreover, we find (after §32) in the system ~:, for the area 
and the volume in III the same value pq. 

We have, from IV, 

According to VII, the globe of ri\dius x is 

::-=t:::Xll, etc, 

The theorems enunciated at the end of VI are evidently 
true without conditions. 

33. It still remains to set forth (as we promised in §;p) 
what is the end of this theory. 

1. Is it the system ~' or the system S which exists in 
reality? 

That is what we cannot decide. 

II. All the results deduced from the falsity of Axiom XI 
(always taking these words in the sense of § 32) are absolttte~v 
tme, and in this sense, depmd on no hypothesis. 

Thet.e is therefore a plane trigonometry a priori, . i11 'which tlu 
system f: alone real{y remains unknow11; and where we lack only 
the absolute magnitudes in the expressions. but where a single 
known case would evidently fix the whole system. On the 
contrary, spherical trigonometry is established absolutely 
in §26. 

We have, on the surface F, a geometry wholly analogous to 
the plane geometry of the system ~'. 

III. If it were established that it is the sy~tem ~' which 
exists, nothing more would remain to be known on this point. 

But if it were establisked that the system :5.: does not e.zist, 
then ( § 3 I), being given, for example, in a. concrete manner, 
the sides x. y, iiilud the te<:tilineai angle which they include, it 
is dear that .itVlOUld be ~hnpossible in itself and by itsolf to 
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solve absolutely the triangle, that' is to say, to determine 
a priori the other angles and the ratios of the third side to the 
two given sides, unless one could determine the quantities 
X, Y. FOl,that, it would be necessary to have in concrete form 
a certain sect a of i-hich the A was known, Then i would be the 
natural unit for leJlf.{tlz (as e is the base of lIatllr'aZ logarithms). 

If the existence of this quantity i is supposed to be known, 
we see how one could construct it, at least with a high degree 
of approximation, for practical use. 

IV. In the sense explained (I and II), we may evidently 
apply everywhere the modern analytic method (50 useful when 
one employs it within suitable limits). 

V. Finally, the reader will not be sorry to see that in case 
it is the system S, and not the system ~', which really exists, 
we can construct a rectilineal figure equivalent to a circle. 

34. Through D we may draw DMIIAN in the following 

manner. From the point D drop c D M 

DB .,,_ AN; at any point A of the .z 

straight AB erect AC.l- AN (in the _ 0 

plane DBA) and let fall DC . .L A C. - - - i\ 
We will have (§ 27) O.CD: o.AB= A B 5 

N 

I:sin .e, provided that DMIIBN. Now FIG. 30. 
sin $ is not >·1; therefore AB is not> DC. Therefore a 
quadrant described from the center A in EAC, with a" radius 
=DC, will have a point B on 0 in common with ray ED. In 
the first case, we have evidently z=rt. L. In the second case 
we shall have (§ 25) 

O.AO(=CD):O.AB=I:sin AOE 
and consequently z=AOB. 

Jf therefore we take z=AOB, then DM will be II BN. 

35. In the system S we may, as follows, draw a straight.l­
to one of the ~ides of an acute angle and at the same time II to 
tllB'other side. 
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Take AM _1_ BC, and suppose L~T_ 
AB=A C su fficiently small ( § 19) 

to make, when we draw BNIIAM 
BQ---+f,c-+--=:::7---== K G 

( § 3+) ABN > the given angle. 
c 

Draw also CPIIAM (§34), and FIG. 3I. 
take NBG and PCB each equal to the given angle. Rays BG 
and CD will meet; because if ray BG (falling by construction 
within )JBC) cuts ray CP in E, we shall have (since 
LCBN=LBCP) LEBCLECB, and so EC< EB. Take 
EF=EC, EFR=ECD, and FSIIEP, then FS will fall within 
the angle BFR. Because, since BNIICP, whence BNIIEP, and 
BNIIFS, we shall have (§q) 

LFBN + LBFS<st. L =FBN +- BFR. 
Therefore, BFS< BFR. Consequently, ray FR cuts ray 

EP, and so ray CD also cuts ray EG somewhere in D. Take 
now DG=DC and DGF=DCP=GBN. We shall have (since 
LGCD=LCGD) LGBN=LBGT and LGCP=CGT. Let K 
(§ 19) be the point where the line L of BN meets the ray BG 
and KL the axis of this. L-line. We shall have LK BN = 
LBKL, and so BKL=BGT=DCP. 

:'\[oreover. CKL=KCP. Therefore, evidently K falls on G, 
and GT!lB~. If now we erect HO _L BG at its mid point, we 
shall hii.ve constructed H 0 II BN. 

36. Having given the ray CP and .r-
the plane MAB, take CB -L the plane 
MAB, BX (in herni-plane BCP) ,_1_ BC, 
and CQIIBN (§34). The meeting of 
ray CP (if this ray fa Us within BCQ) 
with ray BN (in the plane CBN),'and 
consequently with the plane MAB, may 
be determined, And if we are given' Fu;. 32. 
the two planes PCQ, MA B,and we have CB -L to plane 
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MAB, CR -'- plane PCQ; and (in plane BCR), BN -'- BC, CS 
J-.CR, BN will fall in plane MAB, and US in plane PCQ; and when 
we have found the intersection of the straight BN with the 
straight US (if there is one), the perpendicular drawn through 
this intersection, in PCQ, to the straight CS will evidently be 
the tntersection of plane M AB and pl.ane PCQ. 

37. On the straight AMIIBN, there is a point A, such that 
LBAM=LABN. 

If (accordmg to § 34) we construct 
outside of the plane NBM, GT II BN, 
and make BG -'- GT, GC=GB, and 
CPIIGT; and so draw the hemi-plane 
TGD that it makes with hem i-plane 
TGB an angle equal to that which 
hemi-plane PCA makes with PCB. 

A 

FIG. 33. 

Seek then (§36) the intersection DQ of hemi-plane TGD 
with hemi-plane NBD, and finally draw BA _L DQ. 

We shall have, by reason of the similtude of the triangles of 
L lines traced on the F of BN (§ZI), DB=DA, and LBAl\I 
=LABN. 

We readily conclude from this, that, L-lines being given by 
their extremities alone, we may obtain in this manner, in F, a 
fourth proportional, or a mean proportional, and execute, 
without recourse to Axiom XI, all the geometric constructions 
made on the plane in the system ~:. Thus, for example, we can 
geometncally divide a perigon into any special number of equal 
parts, if we know how to make this special partition in the 
system .r. 

38. If we construct (§ 37) for example, M· 

NBQ=} rt. L, and draw (§ 35), in the 
system S, AM ~C ray BQ and II BN; if we BL-___ rf!,.~u 

determine, again (§37), LB1M=LIBN, we 
shall have, putting IA=x (§28), X= 
r : sint rt. L =2, and x will be constructed 
geometrically. 

FIG. 34. 
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\Ve may calculate N BQ so that IA differs from i as little as 
we choose, which happens for sin NBQ=;}. 

aH. If in a plane PQ and ST are!i to the straight M;\J 
(§27), and the perpendiculars AB, CD are equal, we shall 
evidently have ~DEC V-.r. L)3EA; consequently the 
(may be mixtilinear) ECP, EAT would 
coincide, and we have EC=EA. If, 
besides CF = AG, then ~ACF ':':'::: 
~CAG, ane! each of them is the half of 

p Q 

s the quadrilateral F,\GC. ~-"";u'i:-. __ T 

If FAGC, HAGK are two of these FIG. 35. 
quadrilaterals, of base AG, contained between PQ and ST, we 
may demonstrate their equivalence (as in Euclid). as also the 
equivalence of the triangles ,\ Ge, AG H, on a common base 
AG, and having their vertices on PQ. :\Ioreover, we have 
ACF=C\G, GCQ=('GA, and ACF+;\CG-I GCQc::::st. L 
(§v); consequently we also have CAG+ ACG·+ CG;\=st. L. 
Therefore. in every triangle A CG of this sort, the sum of the 
angles=st. L. Whether the straight AG coincides with ,\G 
(., :\IN), or not, the equivalence of the triangles ,\GC, i\GJI, 
as z"dl ill relation to their art't1s as ill relation to tlU' slim of 
tlZl'ir angles, is evident. 

c10.JiJqui,'alellt trimlglcs A Be, ,\ BD, p 

(which we will henceforth suppose recti­
lineal,l, Iwz,in/[ om side t:'qllal, lzmlt tlte 
slims of their angles equal. 

Draw MN through the mid points of 
A C and BC, and take (through the 
point C) PQ : ~IN. The point D will 
fall on PQ. 

A 

For, if ray ED cuts the straight MN at the point E, arid 
and consequently PQ at F making EF=EB, we shall have 
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L2,.ABC=L2,.ABF, andso also L2,.ABD=6ABF, whence it follows 
that D falls at F. 

But if ray BD does not cut the straight M~, let C be the 
point where the perpendicular from the middle of AB meets 
PQ, and let GS=HT, so that the straight ST meets the ray 
13D prolonged in a certain point K (which is possible as we 
have seen in §4). Take also SR=SA, RO Ii! ST, and 0 the 
intersection of ray BK with RO. We would then have 
L2,.ABR=L2,.ABO (§39), and consequently 6.-\BC >6ABD, 
which would be contrary to the hypothesis. 

41. Eqlli11alent triangles A1JC, DEF lW'l'e tile szrms of their 
angles equal. 

Draw .MN through the mid 
points of AC and BC, and PQ 
through the mid points of DF 
and FE; and take RS iii MN, 
TO IliPQ. 

The perpendicular AG to RS FIG. 37. 
will equal the perpendicular DH to TO, or will differ from it; 
for example, D H will be the greater. 

In each of these two cases, the o.DF, described from 
center A, will have with line-ray GS a common point K, and 
then (§39) we shall have 6A.BK=6ABC=L2,.DEF. Now the 
L2,.ABK (§4o) has the same angle-sum as L2,.DEF, and (§39) 
the same angle-sum as L2,.ABC. l'herefore the triangles ABC, 
DEF have each the same angle-sum. 

In the system S the reverse of this theorem is true. 
Take ABC, DEF two triangles having the same angle-sum, 

and L2,.BAL=L2,.DEF. These latter triangles will have, from 
what precedes, the same angle-sum, and consequently so will 
6,ABC and 6,A BL. 

From this follows evidently 
BOL+ BLe + CBL==st. L. 



244 HALSTED-BOLYAI: SCIENCE OF ABSOLUTE SPACE. 

Now (§ 3 I) the angle-sum of every triangle, in the system S, 

is < st. L. 

Therefore L falls necessarily all C. 

42. Let u be the supplement of the angle-sum of the 

L:,ABC, and ZJ the supplement of the angle sum of L:,DEF. We 

shall have L:,ABC: L:,DEF=u:11. 

Let p be the area of each of the equal &F 
triangles ACG, GCH, HeB, DFK, c 
KFE, and let L:.ABC=m.p, and L:,DEF A 
=ll·P· Designate by s the angle-sum Ll..L 
of anyone of the triangles equivalent D I< E A G H B 

to p. We shall evidently have FIG. 38. 

st. L -1I=m.s-(m-I)st. L=st. L -m(st. L -.1'); 

and u=JJl(st. L -.1'). In the same way ·,J=llfst. L -.1'). 

Therefore L:.ABC: L\DEF=m: ll=lI:'(J. 

The demonstration is easily extended to the case of the in­

commensurability of the triangles ABC, DEF. 

We may demonstrate in the same way that spherical triangles 

are as their spherical excesses. 

If two of the angles of the spherical L:. are right angles, the 

third z will be the c.wl'ss in question. Now, designating by p a 

great circle, this L:, is eVIdently 

,. p~ 

=~"-. -( §32, VI). 
277 2i7 

Consequently, any triangle of which the excess is z, is 

zp~ 
==-"-:.;!-411. . 

43. Thus, in the system S, the area of a rectilineal L:. is 

expressed by means of the sum of its angles. 
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If AB increases to infinity, then (§42) /of' 

the relation t:,ABC: rt. L -u-v will be 
constant. Nmv, t:,ABC---·R\CN (§32, V) 
and rt. L -u--v ~ ... 2 (§I). 

Therefore, BACN:z'= 
t:,ABC: (rt. L -u-v)=BAC'S':z'. 

Moreover, we evidently have (§ 30) 
BDCN:BD'C'N'=r:r=tan ",:tan z'. 

Now, for y'='c: 0, we have 

BD'C'N" tan ;/ 
HX;(j'N':. I, and also:=- I. 

Consequently, 
BDCN: BACN=tan 2:Z. 

But we have found (§32) 
BDCN=r.i=i2 tan z. 

Therefore, 

FlG·39· 

Designating henceforth, for brevity, every triangle of which 
the supplement of the angle-sum is z by t:" we will thus have 

t:,=z.i2. 
Hence we readily conclude that, 

if ORIIA~1 a'nd ROIIAB, the ana 
contained between the straights 
OR, ST, BC (which is evidently 
the absolute limit of the area of B 

rectilineal triangles increasing in­
definitely, or the limit of t:, for z~, st. L), 
7rz"2=8i (in F), 

A 

FIG. 40. 
c 

will be equal to 

Designating this limit by 0, we will also have (§30) 
rrr3=tan2z.[]=8r (in F) (§Zl )=8s 032, VI), representing 
the chord CD by s. 

If now, by means of a perpendicul.ar erected at the mid point 
Gf the given radius s of the circle in a plane (or of the radius of 
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form L of the circle in F), we construct (§ 34) DB II CN and 
LCDB=LDCN; by dropping CA -'- DB, 
CM ~'- CA, we shall get z; whence (§ 37), 
taking arbitrarily a radius of form L for . 
unity, 'We shall be able to determine geo­
metrical~y tan:lz, by means of two uniform 
lines of the same curvature (which, their 
extremities alone being given and their axes 
constructed, may evidently be treated as 
straights in seeking their common measure, 
and are in this respect the equivalent of 
straights) . 

and erecting 

N 
B 

A 

FIG. 41. 

We can, moreover, construct as follows a quadrilateral, for 
example a regular quadrilateral, of area=O. 

Take ABC=rt. L, BAC-t rt. L, ACB= 
t rt. L, and BC=x. 

We can express X ( § 3 I, II) by SImple 
square roots, and construct it (§37). 

Knowing X, we can determine x (§ 38 or also FIG. 42. 
§§29 and 35). The octuple of ,6.ABC is evidently = 0, and 
thus a plane circle is f{eometrically squared by means of a rectz"­
lz"near figure and of uniform lines of the same species (that is 
to say of lines equivalent to straights as to their comparison to 
each other). 

A circle of the surface F i; ptanifiui £n the same manner. 
Thus either the Axiom XI of EucNd is true or we have the. 

g-eo1lH.tric qU(ldratun of tke clrde, though nothing thus far 
~ide$ which of the two propositions is real. 
,:'W'beael<er &1il:~,8' .. $ either a whole number, or a rational >f_, .. of~. ~h~~h1he: . «nominator (after redu~tion to the 
."\~pll) j$e~er a prime number of the form Zw-+ I (of 

.'. ·"'~t.:~lar CllS:e), or a. pr~~ft0Jf. prime 
!~~ ~hi<;h 'l'Ja€:b {with the:e~ptlon of 2, 
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which alone may enter any number of times) enters only Ollce 

as factor, we can, by the theory of polygons given by Gauss 
(and for such values alone), construct a rectilineal figure 
=tan2.z=0s. Because the division of i] (the theorem of §+2 
p.xtending easily to any polygons) requires evidently the par­
tition of a st. L, which (as we can demonstrate) is possible 
geometrically only under the preceding condition. 

In all such cases, what precedes conducts easily to the 
desired end; and every rectilineal figure can be transformed 
geometrically into a regular polygon of 11 sides, if II is of the 
form indicated by Gauss. 

It still remains, for the entire completion of our researches, to 
demonstrate the impossibility of deciding (without having 
recourse to some hypothesis) whether it is the system 1', or 
some one of the systems S (and which one) which really 
exists. This we reserve for a more favorable occasion. 
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APPENDIX I. 

REMARKS ON THE PRECEDING MEMOIR, BY WOLFGANG BOLYA!. 

[From Vol. II of Tentamen, p. 380, et seq.] 

I may be permitted to add here certain remarks appertaining 
to the author of the Appendix, who may pardon me if I do not 
always well express his thought. 

The formulas of spJzert"cal trig'01zometry (demonstrated in the 
preceding memoir independently of Euclid's Axiom XI) COill­

dde Wz"t}l the formulas of plalze b-igorlOmetry, 'whell we COllsidl'7' 

(to use a provisional method of speaking) the sides of If 
spherical tria7zgle as reals, tlzose of a rectilineal triangle as 
i'magina1"ies; so that. when it is a question of trigonometric 
formulas, we may regard the plane as an imaginary sphere, 
taking for real sphere that in which sin rt. L =1. 

We demonstrate (§ 30) that there is a certain quantity i (in 
case of the non-existence of Euclid's axiom), such that the cor 
responding quantity I is equal to the base e of natural 
logarithms. In this case, we establish also (§ 3 I) the formulas 
of plane trigonometry, and in such ~anner (§ 3 2, VII) that the 
formulas are shU true ·for the case of the reality of the axiom in 
question, taking the limit of the values for i 7:-7 (p. Thus the 
E\.!didean sY$t~tn is in a certain way the limit of the anti­
$~Gllde@ !>ys:lte~.for 
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Take, In case of the existence of i, the unit=i, and extend 
the definitions of sine and of cosine to imaginary arcs, so that, 
p designating an arc whether real or imaginary, the expression 

P.j :"::l-P.j -.~y 
e +e 

2 
is to be always called 

the cosinc of p, and the expression 
P.j':::T -P,J=-j 

C -c 
the sim of p. 

2}- I 

We shall have for q real 
'I . (1 --'1..1---1 .II q,J"::) .j':j 

c---c .e . -c . 
~--- ------- =sin( -ql - I) 

21 21-1 , 

q ~lJ 

e f- e 
2 

=-sin{ q) _ I), and in like manner 
--q,J--l J~ i '1..).-1 .I-I 

e . +c . 

2 
- =cos( -~ ql- r )=cos( q] - I) 

admitting that, in the imaginary circle as in the real circle, the 
sines of two arcs equal but of contrary sign are equal and of 
opposite sign, and that the cosines of two arcs equal but of 
opposite sign are equal and of the same sign. 

We demonstrate, in § 25, absolutely, that is to say inde­
pendently of the axiom in question, that, in every rectilineal 
triangle the sines oj the angles aJ'e to each other as the circles 
whidt have for radii the sides opposite to tluse angles. 

We demonstrate, besides, for the case of the existence of the 

quantity i, that the circle of radius y is equal to "i [. ~-~-.J - e I-e I , 

which, for £=r, becomes 
rr(cY-rY). 

Consequently (§ 3 I), in a right-angled rectilineal triangle of 
which the sides of the right angle are a and b, and the hy­
pothenl1se c, and of which the angles opposite to the sides a, b, 
care a,P! rt.. L, we have (for i= r ) . 
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From I, 
I: sin (1.=;;( eC-e--C): rr( en-e-n); 

and consequently 
eC--e--C e"-e-a 

I: sin a= . -.-:--: '---:------... 
2,'-1 2 ].'-I 

=-sin (C] =i): -sine av =I)=sin(cl/-=I): sin(al·· ~i)j 

From II, 

From III, 
cos (CI/""::':1 )=cos( aV~I ).cos( bj-':'j ). 

These formulas, as· also all the formul::ts of plane trigo­
nometry deducible from them, coincide completely with the 
formulas of spherical trigonometry, to this extent that if, for 
example, the sides and the angles of a right-angled recti Ii neal 
triangle are designated by the same letters as those of a right­
angled spherical triangle, the sides of the rectilineal triangle are 
to be divided by 1· -~l to obtain the formulas relative to the 
spherical triangle. 

So we get, for a spherical triangle, 
by I, I: sin II.=sin c: sin a; 

by II, I : cos a=sin I~: cos fl.; 
by III, cos c=cos a cos b. 
As the reader may be stopped by the omission of a demon­

stration (in § 3 2 at end) it will not be uselel>s to show, for 
example, how from the _equation 

r lJ b J ei+e- i 

we deduce the formula 
c2=a2 + b2, 

or the theorem of Pythagoras for the Euclidean system. 
It is probably thus that the author arrived at it, and the other 

consequences follow in a similar manner. 
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and consequentl.y 

k k 7.2 1.4 ,+ .' II, 1(, I!' t '= 2 ··f -;;- + ___ ... .,. 
t~ 3-4-£4 

, . u P 
deslgnatmg by ... , the sum of all the terms which follow --;;,. and 

z" r, 
we have 11 .'" 0, when i' 00. For all the terms which follow 
k" 

.. j on being divided by i2, (that is the factor i2 being taken out z·, 
k4 

of the denominator), will have for first term"·':j; and as the 
3.42 

. . . k2 • 
ratlO of a term to the precedll1g IS throughout < -;'J the sum IS 

r, 

less than it would be, if this ratio were =.~~ that is to say less 
z" , 

than 
k4 [k2, k4 

3.4.z'2: 1- {l) = 3'4.(i'2~k2)' 
a quantity which evidently c' 0 when i c' 00. 

From the equation 

e"~ + I!-~'=J [e lIi:I~. +e .. ~+-~ + e ~[-~ +e - '~r~- ] 
there results (calling w, v, A quantities analogous to 11) 

2-+- <~. W =J;- (l 2+ (a -I- ~2r-~~+2 + (~+ ~!~+i.' , whence 
z" •. 2 z· J 

a2 + 2ab+b2+a2-2ab+ b2+~I+ A-'W , 
c2= ..... . - - , a quantity 

2 
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APPENDIX II. 

SOME POINTS IN JOHN BOLYAI'S APPENDIX COMPARED WITH 

LOBATSCHEWSKY, BY WOLFGANG BOLYAl. 

[From I\'urzcr Grzmdriss, p. 82.J 

Lobatschewsky and the author of the Appmdix each con­
sider two points A, Ii, of the sphere-limit, and the corres-
ponding axes ray AM, ray B~ (§23). M p 

They demonstrate that, if II., 11, r designate H L 

the arcs of the circle limit A B,. CD, HL, , 
separated by segments of the axis AC= I, 

AH=x, we have 
/1. ( II. 1 x 

r= l)1 J . 
Lobatschewsky represents the value of 

rby r''', e having some value > I. dependent a ~ . 

G K. 

c D 

A B 

FIG. 43. 

on the unit 

E 

for 

length that we have chosen, and able to be supposed equal to 
the Naperian base. 

The author of the Appendix is led directly to introduce the 
base of natural logarithms. 

II. 
If we putJ9=o, and r, r' are arcs situated at the distances 

j", i from fl., we shall have 
v 

fl. ~v Y fL 'i I h Y I'~ =().= ,",=Il = ,w ence = I r r . 
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He demonstrates afterward (§ 29) that, if II is the angle 
which a straight line makes with the perpendicular to its 
parallel, we have 

Y ==cot } If. 

Therefore, if we put 2='~--lt, we have 

tan 2' + tan-J,lt 
Y =tan (2 +- ,1. 11 ) =---------

-- I -tan z tan+'u, 
whence we get, having regard to the value o{tan tU=Y-l, 

tan 2=~(Y -Y 1)=~ (I L I -- n (30 ). 

If now \' is the seml-chord of the arc of circle-limit 21', we 
r 

Prove (Ii "0) that-- =constant. 
, J ,) ,tan 2 

Representing this constant by i, and making y tend toward 
zero, we have 

2']1 
or putting< =;k, 1=6'1, 

I 
y 

21' 
I, whence 

,I i I 
I ~----

y 

(1 

kl i: ekl-r :...~ kl( I + (0), 

(I) being infinitesimal at the same time as k, Therefore, for the 
limit, I=I and consequently I=e. 

The circle traced on the sphere-limit with the arc r of the 
curve-limit for radius, has for length 2"1". Therefore, 

0),=2;:-1'=2" z' tan z="i(Y- V-I). 
In the rectilineal 6. where 11., /1 designate the angles opposite 

the sides a, b, we have (§2S) 
sin (l:sin ,3=Oa:Ob=rri(A-A-l):;:-z'(B-B-l) 

=::sin (al/=-i): sin ( h -:.....1)· 
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Thus in plane trigonometry as in spherical trigonometry, the 
sines of the angles are to each other as the sines of the 
opposite sides, only that on the sphere the sides are reals, and 
in the plane we must consider them as imaginaries, just as if 
the plane were an imaginary sphere. 

We may arrive at this proposition wIthout a preceding de­
termination of the value of 1. 

r 
If we designate the constant ---- by q, we shall have, as 

tan z 
before 

Oy=;:-q(Y-Y-I), 
whence we deduce the same proportion as above, taking for i 
the distance for which the ratio I is equal to c. 

Ifaxiom .Xl is not true, there exists a determinate i, which 
must be substituted in the formulas. 

If, on the contrary, this axiom is true, we must make in the 

f1 
formulas i = x,. Because, in this case, the qnantity ~:=Y is 

I 

always=I, the sphere-limit being a plane, and the axes being 
parallel in Euclid's sense. 

The exponent ~ must therefore be zero, and consequently 

l = 00. 

It· is easy to see that Bolyai's formulas of plane trigonometry 
are in accord with those of Lobatschewsky. 

Take for example the formula of §37, 
tan fI(a)=sin B tan fI(p), 

a being the hypothenuse of a right-angled triangle, p one side 
of the right angle, and B the angle opposite to this side. 

Bolyai's formula of §3I, I, gives 
r:sin B=(A-A-l): (P_P-l). 

Xow, putting for brevity, }17(k)=k', we have tan 2p':tan za' 
=( cot a'-tan a f

): (cot p' -tan P') =(A-A -1); (P~p·-J) 
=1:sil1 B. 



HALSTED-BOLYAI: SCIEKCE OF ABSOLVTE S~ACE. 

APPENDIX III. 

LIGHT FROM :-.rON-EUCLIDEAN SPACES ON THE TEACHING OF 

IiLEMENTARY GEOMETRY. 

By Cr. B. llAlsrEll. 

The preface to my Elements of Geometry, 1885, says "that 
around the word 'distance' centers the most abstruse advance 
in pure science and philof:ophy." 

Recently R. A. Roberts, in his "l\lodern Mathematics," gives 
as one of the two main roots from which modern mathematical 

. thought springs, the recognition of the fact that angles and 
distances in the Euclidean experiential geometry depend 
upon a certain absolute curve of the second order. 

As foreshadowed by Bolyai and Riemann, founded by 
Cayley, extended and interpreted for hyperbolic, parabolic, 
elliptic ,spaces by Klein, and now recast and applied to 
mechanics by Sir Robert BaH, this projective metrics may in 
truth be looked upon as the very soul and characteristic of 
what is highest and most peculiarly modern in all the be­
wildering range of mathematical achievement. 

It permeates like a vital essence, and for questions of 
method, of teaching, of exposition it is a final criterion. 
Nearly aU mathematicians have already fallen into rank as 
holding that number is whoHy a creation of the human intellect, 
whHeon the contrn.ry geometry has an empirical element. Of 
a nunlbcE of possible geometries we cannot say a priori which 
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shall be that of our actual space, the space in which we move. 
Of course an advance so important, not only for mathematics 
but for philosophy, has had some metaphysical opponents, and 
as long ago as 1878 I mentioned in my Bibligraphy of Hyper­
Space and Non-Euclidean Geometry (..American Journal of 
l\Iathematics Vol. I, 1878, Vol. II, 1879) one of these, 
Schmitz--Dumont. as a sad paradoxer, and another, J. C. 
Becker, both of whom would ere this have shared the oblivion 
of still more antiquated fighters against the light, but that Dr. 
Schotten, praiseworthy for the very attempt at a comparative 
planimetry, happens to be himself a believer in the a priori 
founding of geometry, while his American reviewer, Mr. Ziwet, 
happens to confuse what would be good in a book written for 
the very necessary preparatory or propaedentric courses in in­
tuitive geometry, with what would be good in a treatise pro­
fessing to deduce Euclidean geometry from only the necessary 
assumptions. 

He says, "we find that some of the best German text books 
do not try at all to define what is space, or what is a point, or 
even what is a straight line." Do any German geometries 
define space? I never remember to have met one. 

In experience, what comes first is a bounded surface, with 
its boundaries, lines, and their boundaries, points. Are the 
points whose definitions are omitted anything different or better? 

Dr. Schotten regards the two ideas "direction" and' 
"distance" as intuitively given in the mind and as so simple as 
to not require definition. 

As to what Webster's Dictionary says of the meaning of the 
English word "direction", Professor Cajon has honored me 
by a quotation on page 383 of his a.dmirable History of 
Mathematics in the United States, -.nd only today I saw 
mention of an accident caused while two jockeys were speeding 
around a track in opposite directions, and also chanced on 
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page 87 of Richardson's Euclid, 1891, to read "The sides of 
the figure must be produced in the same direction of rota­
tion; . . . going round the figure always in the same direction." 

No wonder that when Mr. Ziwet had written: "he therefore 
bases the definition of the straight line on these two ideas," he 
stops, modifies, and rubs that out as follows, "or rather recom­
menas to elucid~te ,the intuitive idea of the straight line 
possessed by any well-balanced mind by means of the still 
simpler ideas of direction" [in a circle] "and distance" [0'1 a 
cl1rveJ. If this is meant for an introductory geometry-for­
beginners, all well and good. Elucidate any intuition pos­
sessed by the well-balanced baby-mind by anything still 
simpler which you may happen to think will elucidate it. 

But when we come to geometry as a science. as foundation 
for work like that of Oayley and Ball. I think with Professor 
Chrystal: "It is essential to be careful with our definition of 
a stmt'ght lin~. for it will be found that virtually tht: properties 
of the straight line determine the nature of space. 

Our definition shall be that two points ill gmcl'al determine a 
straight line, or that in general a straight line cannot be made 
to pass through three given points." 

We presume that Mr. Ziwet glories in that unfortunate ex­
pression "a straight line is the shortest distance between two 
points," still occurring in Wentworth (New Plane Geometry, 
page 33,) even after he has said, page 5, "the length of the 
straight line is called the distana between two points." If 
the lengtk of the one straight line between two points is the 
distance between those points bow can the straight line itself 
be the s/u)"t£st distance. If there is only one distance, it is the 
longest as much as the shortest distance, and if it is the lmgtk 
of this shorto .. long:e$t distance which is the distance then it is 
not the s'b'lligbt li". it$elf which is the longo-shortest distance. 
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But Wentworth also says "Of all lines joining two points the 
shortest is the straight line." 

This general comparison illvolves the measurement of curves, 
which involves the theory of limits, to say nothing of ratio. The 
very ascription of length to a curve involves the idea of a limit. 
i\nd then to introduce this general axiom only to prove a very 
special case of itself, that two sides of a triangle are together 
greater than the third, is surely bad logic, bad pedagogy, bad 
mathematics. 

This latter theorem, according to the first of Pascal's rules 
for demonstrations, should not be proved at all, since every 
dog knows it. \Vel! and good in our geometry-for-beginners, 
to which alone Pascal's rules apply; but to this objection, as old 
as the sophists, Simson long ago answered for the science of 
geometry, that the number of assumptions ought not to be 
increased without necessity, or as Dedekind has it: " HltlS 
bc'l('dJ\~ar is!, soli iJ! dl'r rVissl'Ilsdza/t 1lickt olme Bcz<'l'is 
gcglaubt zi'i:'rdm." 

But ~! r. Ziwet could correct one of his misapprehensions by 
looking into Wentworth's book, namely the mistaken idea that 
.American "text books begin with several pages .of definitions 
to be c{llmtzitlt'd to l1tt'1-tlory, followed by a page of axioms agat'/Z 

to be t'ommitted to memory." . Wentworth carefully reproduces, 
whenever he uses them, preceding definitions, axioms, theorems. 

It is worth notice that the mistake made in our Century 
Dictionary, the confusion of hyperbolic with elliptic geometry, 
is made also On page 186 of Rebiere's enjoyable" :\iathema­
tiques et l\Iathematiciens," 3:889, where he says: "De Ii des 
ge07:tutrits lwn-eztclidiemus ou la somme des angles d'un 
triangle n'est plus egale a deux droits: dans celIe de Rieman, 
elIe est plus petite que deux droit et dans celIe de Lobat­
schewski, eUe est plus grande." Note also that, Frenchman­
like, both the proper names are here mis-spelled. i>lay ,ve not 
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fear that here also is a teacher of mathematics who never has 
read Lobatschewsky's immortal Essay on Parallels? Contrast 
a distinguished Englishman, Professor Levett, who says: "It 
is many years since I first made acquaintance with this great 
work, and I am delighted to see that the good cause of sound 
geometrical learning has been advanced by the appearance of 
an English translation. I believe that I am one of the very 
few schoolmasters who have read the essay with pupils. King 
Edward's school boys are brought up in the true faith as to the 
sum of the angles of a triangle." , 

The brillIant American, Professor W. B. Smith, (Ph. D., 
Goettingen) has just written: "Nothing could be more· 
unfortunate than the attempt to lay the notion of Direction at 

. the bottom of Geometry," 
Was it not this notion which led so good a mathematician as 

John Casey to give as a demonstration of a triangle's angle-sum 
the procedure called "a pnutical demonstration" on page 87 
of Richardson's Euclid, and there described as "laying a 
'straight edge' along one of the sides of the figure, and then 
turning it round so as to coincide with each side in turn." 

This assum~s that a straight line may be translated without 
rotation, which assumption readily comes to view when you try 
the prbcedure in two-dimensional do~ble-elliptic geometry, our 
familiar two-dimensional spherics. . It is of the greatest 
importance for every teacher to know and connect the com­
monest forms of assumption equivalent to Euclid's Axiom XI. 
If in a plane two sj:ra.ight lines perpendicular to a third can 
never meet, art; there others, not both perpendicular to any 
third, which can. never meet? Euclid's Axiom XI is the 
assumption No . . Playfair's answers no more simply, But the 
very same answer is given by the common assumption of our 
geometries, us~Uy unnoti~d. that a circle may be passed 
through any th~\n1)~nw:eas- points. 
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This equivalence was first shown by Bolyai, who looks upon 
this as the simplest form of the assumption. Lobatschewsky's 
form is, the existence of any finite triangle whose angle-sum is 
a straight angle; or the existence of a plane rectangle; or that, 
in triangles, the angle-sum is constant. 

One of Legendre's forms was that through every point 
within an angle a straight line may be drawn which cuts 
both arms. 

But Legendre never sa\-v through this matter because he had 
not, as we have, the ~yes of Bolyai and Lobatschewsky to see 
with. The same lack of their eyes has caused the author of 
the charming book "Euclid and His ~Iodern Rivals," to give 
us one more equivalent form: "In any circle, the inscribed 
equilateral tetragon is greater than anyone of the segments 
which lie outside it," (A New Theory of Parallels by C. L. 
Dodgson, 3d. Ed., 1890). 



NOTE ON THE TRANSITION CURVE. 

By PROF. W. H. ECHOLS, UXIVERSITY OF VIRGl:\,IA. 

I. 

In Scimtia: Bacca!allnms, Vol. I., ::\'0. I, in the article TIlt' 
Railway Transition Curz1c, TABLE I, is altogether wrong. In 
correcting this error, I take advantage of the opportunity to 
present anew the reduction of the formulae there given, to 
present a further development of the system of Transition 
Curves and to call the attention of anyone interested in this 
subject to a most interesting and highly valuable article in 
No. 5;Tlu Teclmogmph of the University of Illinois by Pro­
fessor Talbot. 

Prof. Talbot has developed the Transition Spiral, as defined 
p. 17, No. I, in this journal, while I have developed the 
"Transition Curve", using thi~ name to mean the "Taper 
Curve" as defined by Prof. Talbot. 

In my article of }'Iarch, 1890, referred to above, I defined 
the Transition Curve as follows: "A Transition Curve is one 
whose turvature increases per unit of arc in arithmetical pro­
gression, '" or whose change of curvature per unit arc is 
constant." 

Using the same notation as there used, let Rand D be the 
radius and degree of the main curve, united to the tangent by 
a series of arcs of 1'i, ... Y" and central angles d!, ... lin re-
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spectively. Then we have for the tangent distance of the 
curvt:, 

T=(R+p)tan tI+q. 
When p and q are the distances of the point of contact of 

the main curve with a tangent parallel to the initial tangent, 
measured from the initial tangent and from the P. C. along the 
initial tangent respectively. 

From the figure in No. I, we have, 

Putting 

and 

f- ('-J-r2)sin d 1, 

q= :(r2-r:~)sin(dl+d2) 
1 T .... 

l + (rn-R)sin(d1 + ... d,,). 

n=2r2=3r:~= ... =llrn• 

dl =+sd2=tds= ... =+,dn . 

We have, 
sin d1 

+t sin 3d l 

+,rsin 6d1 

q=~rl': + ... 
I + sin J-(ll-r )nd1 

~ll(rz-r) 2 

+ 2 r ~-~ J sin ill( II + l)d1. 

If we put in the circular measures for the sines of these 

small angles, we get, 

q=+srJa\~o { 11- I + 2 (:-~ } ~~'<!~t_0 } , 

h { R } =111" d --- 1-(11+ r) ._---_.> 
11 n I 80 211Y n • 
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In particular if R=rn, 

180 
If 1"1=';' X 100=5730, and d1=Y. 

Then, in general, 
II + I 1 

Q=50Il ( I - 2D J; 
and if D be integral=n+ I, 

Q=25(D~r)=2511· 

In like manner, we have, 
r r] (I--COS dd -r~( I-COS dl) 

p=J +r2(I-COS ;r;+d2 ) -ril(I-~cOS ;I;~-(l;) 
1+ .... 
l +r,,[I-cos(d j + ... dn)]-R[I-cos(d]+ ... dn )], 

r (1'1--1"2):2 sin2 -~d] 

I +(r2-r3)2sin2H(h+d1) 
T .... 

=;1"1' . ') .1l(1l-r) + (rn_ ]-1'11-) '2 sm--.\~ d] 
- - '2 

n(Jl+I) + (rn-~- R) 2 sin2 +,- d,. , - 2 

Putting as before, rl=nr1h and dl=~dJl' etc., we have, 
1l 
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In particular, if R=rn , we have, 

P=ll ( ll~- 1) I- . ~- 1 2 r:!!l.. 
ISo 24 

If, however, D is not integral and n + I, but is II degrees and 

m minutes, we have, for 1'1=5730 and dl=~ , 
JZ;j llln2 

P=S4'" lOOO' 

The TABLE I, p. Lt, Vol. T, No. I, should be computed from 

this formula. since the table there given is 'Zulwl<v 1:(l1'oJZg; it is 

given here correctly. 

TABLE I. 

D I I 2 :r -t ~ 6 7 :) 

I 00 
, 

a 0,4 +,0 6,2 0, I I. I 2,2 

10 0 0, I 0,5 1 -" 2,5 -t,3 6.7 I ~ ,,) ., 

~ 20' ° 0,2 0,7 I.4 2,B +.'/ 7,1 

I 0,1 0,2 0.8 1,6 3, I 5,1 7,8 

J 
-1° 0,1 0.3 0,9 1,8 3,4 ~ ~ 8,3 ... ,,:) 

50 
, 

O. I 0·4 0,9 2,0 5,9 8,8 3,7 .. rrwm'T ...".. 

Diff 0,0 0,0 0,1 0,2 0·3 0,4 0,5 

The formula from which this table is computed is so simple 
that no lable is necessary. 

In like manner the deflections from the initlal tangent to set 
the Jl points on the transition, tabulated in TABLE II. p. 15, 
::\0. 1, may be expressed in a simple formula as follows, in 
minutes. 
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In same way, 

Dc=1+ IOll. 

Dt=H(2nf+ 3n- I ]. 

Again, in running in the finial transition curve from the end 
of the main curve, we find the necessary deflections tabulated 
on the same page referred to above, in the TABLE III. 
Noticing that these series of angles may be summed and 
expressed in a formula by making use of the principles of 
"finite d£fferences", we say that the deflection in minutes from 
the terminal tangent of the main curve to set the mth point on 
an It chord transition curve. is, 

IO 
V t =4- [me 6n+ ?,-2m) - I]. 

This does away with TABLE III. 
To get working formulae for the coordinates of a point on 

the transition curve (see x and y. TABLE II) we notice 
that the mth chord of, the transition makes with initial tangent 
the angle 1m2d1 or tmt degrees, we have for the projections of 
the chords on the initial tangent and a normal to it 

(In) 2 
.1X=50 cos . 2 ; ( 11l J 2 

.1Y= 50 sin . -2 . 

( - 'J ( 1ll 41 
.' . .1;\ •. 50[I-~ [ I~o J -lj j' nearly. 

m 
."" .t'=l'( J.\"). 

o 

( ;-: 'j ~ 50 ~\ 4 
=5om- ISO 32 :; m. 

!II I 
l' ,n4= 0-(61fi+ 15n4), using the two highest powers. 
o 3 
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I . 4 h Or the distance along the tangent is ,- --4 ( 1125 +~Hl) less t an 
10 

the distance along the curves. 

Like\vise for y. 

Jv=~o-- -;:: (' 112 1 ~ 
- ) ISO 2 • 

III 

::.' m2=H 2m;! + yJl2 ). using highest powers. 
" 

5;:: . . . .) 
v=-- (m3+ "fir) - 2 16 2' 

=0,073 (1123+ :~m2). 
To recapitulate: 

In order to unite two tangents meeting at I" by a D" curve 

and to pass from the tangents to the curve by a series of arcs 

of 50 feet whose curvatures are respectively those of. 1°, 2°, 

3' ... nO curves, 1ft being the number of integral degrees in DO 

and m the number of minutes left over. 

We have 

(I) T (R-t p)tanV+q 

Where I _~ __ ;l p= - 7r + o.OOr nt.,.. 
54 

tl+ I ) 
q=50 n( I - i.iX ... 

[If D is of integral degree then ,Jil=O. D=?z+ I and 

I 
T (R+ 54 .. t~)tan V+25 1Z ]. 



ECHOLS: NOTE ON TRANSITION CURVE. 267 

The vernier angles for setting the 11 points on the transi­
tion from its initial point are in minutes 

(2) V j=:}(:m2+31l +I), 
and from its terminal point 

(3) Vt=~!l[m(61l+3-21l)-IJ. 
A tangent to the spiral at the nth point makes with the 

initial tangent the angle 
(4) 15Jl(1I+ I). 

( 5) 

(6) 

The distance from the beginning of curve, measured 
along the tangent, to the mth point is les~ than the length 
of the curve to that point by 

mO + !!,1Il4 m" 
--_. or nearly , 

10_1- . 10-+ 

and the offset from the tangent is 
mH 

0,°73 ( mll+ ~1Il2) or nearly 'l 10' 

The transition moves the mid point of curve 

p sec ~. I or 5\ liS SeC 1 Ie 
further from the intersection of the tangents. 

Thus no tables are needed to run in such a curve (other than 
table of tanget for getting T). It will in general permit easier 
running if the small tables such as I, II and III are used. 

However 11 being an integer less than 8 the formulae 
are easy. 

II. 

Prof. Talbot has so nicely developed the Transition Spiral 
for a railway curve that I am tempted to push the taper curve 
to its limit w£tkout tke calm Ills for sake ~f the interest that 
may be had in the deduction of the formulae as well as for 
such value as it may have for practical purposes. 
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Let the" design be to unite a pair of "tangents" by a circular 
curve in such a manner that the transition from tangent to 
curve is made by another curve whose curvature per foot of 
length increases uniformly from tangent to main curve, The 
curvature of main curve and transition being the same at theIr 
point of contact. 

" Then the central angle of the last foot of the transition is 

f~o D (letting D be the degree of the main curve in minutes), 
and S the length in feet of the transition. If () is the number 
of minutes in the central angle of the first foot and i the 
constant increment of central angle per foot, we have 

~. D 
n=:= I·OOS· 

And as before 
T=(R-t-p)tan-t I+q. 

Where p and q are as before, 

becomes 

p=":~;~!) [rio] 2rndndl. 

P=O,0000001212 S2D, 

=0,0727 L2De' 

Where L IS length of transition in chains (100') and Do 
degree of main curve in degrees. 

Also 

becomes 
q=!(S--I). 

S1'nce S· &. 180 
1$= • and Ylld.=yOii RD=~· - , 

1! 

The .sth central aogle is $~ ·and the 5th fopt of the transition 
makes with the ~t at its ead the angle ish, The angle 
which the tqge~. at $ IMkes with-the iuitial tangent is 
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:rase s + I), therefore the sth chord makes ~dS2 minutes with the 
initial tangent. The projections on this tangent and a normal 
to it are 

If I be s in chains. 
In like manner for y 

s 
.1..~~' ( J.\') 

o 

2115 '2 5 • 4 
=S-~Ior2 (} (S'+ts ), 

D2 
=s-0,00076 15 L~' nearly, 

s 
y=~' (Jy), 

o 

_~ b ~'2 
--2 ~--~ - s 

3438 0 ' 

3 (l-~ J 2) = 6876 SS-+2 S , 

=0,00004848 a ( il+ts2 ) 

=0 29 t la Dc, , L 

If here s=S, the offset Y at the end of the curve is 
Y =0,OOPOOO4848 DS2. 

But P=O,00000012 12 DS2, 
Therefore, Y =4P . 

. The long chord of the spiral makes with the tangent the 

angle 8. such that 
tan (J '1/x. 
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Since (j is small, we have 

l' 
fJ=i4,<8' . , " x 

=0,16666 {Js ( s+ 1) nearly, 

i, /)s(s·H)· 
But the tangent at s makes r=~ (;s(s+ I) with the initial 

tangent, hence 

T -_~Js. 

It would be useless to carry the development of this curve 
any further since Professor Talbot has worked the system up 
so completely. 

It may be spggested, however, that this system be applied to 
that particular spiral whose length in feet is half the number of 
minutes in the degree of the main curve. This gives a tran­
sition of about the proper It-ngth, such as is employed in 
practice. I n such a curve the change of deflection is one 

minute per foot, giving very convenient and satisfactory 
dimensions. The (approximate) formulae for such a tran­
sition, good up to an 8 curve, are 

S=:\-D, 

o=i=0.02. 

q=HS-I), 

8'~ 
'"-S -- . so- ,--- , . - 10,5 -. 1000 

s 
9~ :::=: 

100 
HI). 
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The angle 1ft for deflecting from long chord to the tangent 

at £ on the spiral is 

ip'=If-{l=2S-}l. 

For working purposes these are close enough, 

P 1 LX ( 2 £)3 £3 1.. 0) = 4' .; .'\;'=S- 10 .; y= '; S=?l"OtfS-; y=O,OI (s-+ s . 

The tangent may be drawn 

T= { R + 7 (!?p ') 3} tan oJ, I + IS D -0.5. L 10) -,-

Where evidently the Do in the brace need only be used to 

the nearest integral degree. 

There remains nothing to be considered unless it is the 

vernier angle or deflection from the terminal tangent of the 

main curve to set in a point on the terminal transition. 

Let accents l', Il, s', etc., indicate the same quantities running 

from this end of the curve as is indicated by the unaccented 

letters when running from the other end. 

The capitals f1, (/J, L, S, etc., refer to the whole transition. 

Then in the triangle fowred by the t\'m ends of the curve and 

a point on it, we have, since the angles involved are small and 

the arcs sand s' nearly enough equal to their chords, 
.0' , 
rl - S S L-l' 

In this equation, we have, 

f:!=(j)-H=2f-}-~L, 

fi=.l~QU; O=l~!' (L_t)2. 

Substituting these values and reducing, we get, in minutes 

If =100 fL-1.~"l'2 '~L. 
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If I'=L we get 

as should be .. 

11=1 100 U--~L 

=ztJ--;1L, 

The error of the first assumption manifests itself in the term 
~L, a constant, for 1'=0 gives H'='}L which is wrong. If, in 
order to get correct results at the limits, we put 11' for ;JL we 
get the working value of fI' 

H'=( lOoL-1)1-11'lt", 
=( S-\j)1' - I~HI':!. 



NUMBER, DISCRETE AND CONTINUOl7S. 

By DR. GEORGE BRUCE HALSTED, UNIVERSITY OF TEXAS. 

PREFACE. 

The modern era of the world, the scientific, dates from 1637 
when Descartes published his system of conditions \vhich we 
now interpret as giving to every point in a plane a distinct 
name consisting of two numbers, and to every pair of numbers 
a point. H is conventions, though for his use explicable, and 
by him explained, as a geometric algebra operating with sects, 
yet get their dual power only when seen as setting up a unique 
one-to-one connection between number-pairs and points, so 
making algebra talk geometry, and inversely, geometry talk 
algebra. For example, the equation A.1· + By T ( repre­
sentmg each pair of numbas which jointly satisfy the equation, 
pictures now an aggregate of points, which are {l71 a straight 
line while number is discrete, but which art' a straight line 
when number is continuous. Descartes perhaps never passed 
beyond' Euclid's representation of the ratio of two magnitudes 
by .t'~{)other magnitudes, never reached the conception of the 
systematic representation of the ratio of two magnitudes by 
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one magnitude, the primitive form of continuous number. 
Xewton makes this great step explicitly and consciously. At 
the beginning of his Arithmetica universalis he says: 

"Per Xumerum non tam multituclinem unitatum quam 
abstractam quantitatis cujusvis ad ali am ejusdem generis quan­
titatem quae pro unitate habetur rationem intelligimus. Estque 
triplex; integer, fractus, et surdus: JJlttga quem unitas 
metitur, Frac!us quem unitatis pars submultiplex metitur, et 
Surdus cui unitas est incommensurabilis. 

* * * * 
Quantitates •• e! Affirmativae sunt SOl mojores 71 ill 11o, 'Z,e! 

:..r egativae Stolt llihilo millores." 
Here we have at once the whole continuous system of real 

number, containing not only the absolute negative, but the 
general irrational, for notice that here a "surd" is not a 'root', 
but the abstract ratio of any possible sect incommensurable 
with the unit sect. \life may readily prove rigidly that ratios 
combine according to the same laws as natural !lumbers. 

Following Euclid, we know that any ratio may be changed 
into one with a given second term. If then x equals the ratio 
of the sect A to the sect D, and J'=B: D, then the ratio 
(A -!- B): D equals x+)" the sum of the ratio.': and y, a mag­
nitude independent of D. This addition obeys the same 1"",·s 
as that for natural nnmbers, and the inverse x-y is always 
possible and determinate, jf x>y. 

That Euclid's well-known composition of ratios obeys the 
same laws as ordinary multiplication of natural numbers and 
fractions, I have shown on page 205 of my Elements of 
Geometry, and that the same holds for division follows from 
the problem on page 203. 'To alter a given sect in a given 
ratio', \\Thich is nothing but dividing the sect by the ratio. 

For anyone ',vho is willing to base the continuity of the real 
number-system on the continuity of space, fc; r anyone who is 
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satisfied to say of the entire system of real numbers, that, 

inasmuch as it contains an individual number to correspond to 
every individnhl point ill the continuous series of points 
limning" a rig'ht line, it is continuous, this ratio method would 

seem til be the logical one. The defining of numbers by 

regular sequences, the usc of series, the theory of limits, and 
various new mathematical conceptions have been employed by 
\Ncicr.,;trass, C;. \ 'antur, aocl Dcclckind in establishing three 

independent and cql1ally cl)!.~ent thcories which should prove 
the cUl1tinuity of number without borrowing it from space. I 

d(, !lot know (If the c:-:isll:ncc ()f either of these demonstrations 

Fine's 'limber-System, starts G. Cantor's theory, 

as f:lr as either <if ('alltor's fundamental COll­
um1 perfect", but instead is 'content 

to f!:ct continuity from the line. Upcm this procedUl"e Deuekind 
is particularly f;CVCfe. He keeps hie; theory wholly pure from 

any adrnixturc (If tlll:asurcable magnitudes, and maintains that 
i(lr a g'rcat uf the science of space the continuity of its 

forms is not a necessary presupposition, and gives the following 

If we take any three non-collinear points with only 
that tIlt' ratios of the.: sects A AC,BC: are 

alld consider as present in space only those 
points , f()r which the ratios of A?vJ, BM, to AB are 

likewise algebraic numbers then the space consisting of these 
points is throughout discontinuous; [it lacks all points D. for 
which a ratio, as AD, to j\ II in a transcendent number such as 

rr: or I'J; yet despite the discontinuity, th~ perforation, of this 

space, all constructions occurring in Euclid are in it just as 
achievable as in perfectly continuous space. The discontinuity 
of this space would therefore never be noticed, never be dis­

covered, in El.lclid's science. 
"Um so sch6ner erscheint es mil', dass der Mensch ohne jede 

Vorstelh1l1g von messbaren Grossen, und zwar durch ein 
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endlichcs System cinfacher Dcnkschritte sieh zur Sch':')pfung des 

reinen, Zahlenreiches aufsch wi ngen kann; llnd erst 
mit diesem I-L"lfsmittel \\'ird es ibm nach meiner ;\ nsicht 

die V orstellung vom stetigen Ral1 me zu e111er 

deutlichen auszubilden". 

CHAPTER 1. 

COUNTI:'\G AKD NATURAL NUMBERS. 

l. NUMERALS. 

I. .\n . .Algebra is an artificial language composed of 
symbols with their laws of combination, and possessed of 
peculiar advantages in giving of actual relation~ representations 
which can be to rules of operation and 
procedure. experimented upon to give new knowledge, ac­
cording to organized processes. The first algebra was slowly 
formed throughout to th~ properties of 
numbers. 

-, In nature, each distinct 
vidual. Each distinct thing is a 
individuai is the Of distinct 

as an indi-
The 

\"hic11 
exists in l1::lture. But the human mind tc'lkes Eke individuals 
together and makes of them a and names it. 
Thus we have made thecol1cepl: a 
covey, a These are artificial 
the in the ",,,,A,-·A,",,,. 

make. From the cont<;mpil1l.t!,O~ in re-
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Jation to the artificial individual spring the related ideas 'one' 
and 'many'. "\ unit thought of in contrast to 'many' as 

, gives us the idea Ol!(,. .\ 'many' composed of 'one' 
and another 'one' is characterized as two. A many composed 
of 'one' and the special n1::ll1y 'two' is characterized as 'three'. 

1\ ulllerals applied thus each to a special kind of discrete 
magnitude are called mrdillallwmbcrs. 

But if fur lise in picturing all special artificial units or discrete 
magnitudes, we make an abstract system of elements where no 
Ch:lrilCicristic of any clement is retained beyond its simple dis­
tinctness from all others, and give each dernent successively a 
name, 'first', 'second', 'third', etc., these would be ordillal 
Itlrmbtrs. 

Ordinal numbers will picture a group by successively 

l!<lch clement in the group. i\ cardinal 
special picture for a special group. 

Each of a group is wholly abstract, in that it 
represents the individual existence of the elements of the 

discrete 

more. 

is a creation of the human mind, and only applies 
to the artificial wholes created by the human mind, 

3. Filr the transmission of these abstract conceptions the 
former! the original <lpparatus, and the name of .,a 

number denoted when referring to an artificial unit, as of 
sheep, that it certain group of fingers would touch successively 
the natural units in the discrete magnitude indicated, or a 
certain finger stand as a symbol for the numerical characteristic 
of that f.;:roup of natural units. 

Our word is cognate with the Latin quinque, Greek 
7[~w,s, Sanskrit panldn, Persian pendji; now in Persian penjeh 
or pentcha means an outspread hand. In Eskimo 'hand me' 
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is tam ut'che, 'shake hands' is tal la'lue, 'bracelet' is 
tale gow'ruk, 'five' is talema. 

"In Greenland, on the Orinoco, and in Australia alike, 'six' 
is 'one on the other hand' ". 

II. COUNTING. 

+ The operation of counting consists in establishing such a 
correspondence between two groups that to every thing 01' 

.element of the one group is assigned one particular thing or 
element of the other. 

It establishes a one-to-one correspondence of two aggre­
gates, one of which is carried about as a standard; and if a 
group of things can have this correspondence with the standard 
group then those properties of the standard group which are 
carried over by the correspondence will belong to the new 
group. 

5. The Chinese even at the present day extend the primary 
standard group, the fingers, by substi~uting for it a group of 
ivory balls movably strung on rods fixed in an oblong frame, 
With this abacus they count and perform their arithmetical 
calculations. 

6. In many languages there are not even words for the first 
ten groups, so that the actual fingers are used; higher races 
have not only named these groups, but have extended indefi­
nitely this system of names, and no longer count directly with 
their fingers, but use the names, so that the operation ()f 
co.unting a certain assemblage of things consists in assigning to 
each of them one of these numeral words, primarily an ordinal. 
since the cardinal wordnolt' u$fl'd represents. not the individual 
with which it is, associated,: but, the entire group of which this 
individual is the last. 

.~J. lUIlCOll.op,'aV' •• ot.S. " 

7. But fOf' ~of",.~~grQUp:.r _jects can be 
represented by,., ,~,;~;~,,~:'~~, it carn be 

,': ",c' '" , "" '. 
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produced whenever wanted by just making a mark for each 
distinct object. 

Thus the marks I, II, III, IIII, picture first the groups with 
a permanence beyond gesture or word, and for many important 
purposes, one of these diagrams, though composed of indi· 
viduals all alike, is an absolutely perfect picture, as accurate as 
the latest photograph, of any group of real things no matter 
how unlike. 

8. Such a record would not only help in getting an idea of 
an actual group, as a flock of sheep; but after a lapse of time, 
would help in recalling and accurately reproducing that idea. 

Thus the shepherd who before sleeping makes such a 
picture of his flock, may, upon waking, use that picture to 
compare his flock of yesterday with his flock of to-day. The 
scout who makes such a picture of a band of enemies, may use 
it torouse in the minds of his companions ::\n accurate idea of 
what he has seen. 

IV. GRAPHIC NUMERALS. 

9. Each stroke of such a group may be called a unit. 
Each group of such units will correspond always to the same 
group of fingers. to the same numeral word. 

10. To this primitive graphic system of numeration there is 
no limit, and when it becomes cumbrous. the hands again 
suggest natural abbreviations. 

The Etruscan and Roman numeral V comes probably from a 
picture of an open hand, and X from two V's joined thus .,)0. 

I I. . In the Roman notation as still in use we see another 
and more c01Jventional element" in distinguishing IV from VI 
and IX from XI. This is the significant use of relative 
position. 

12. The systematic decimal system in accordance with 
which. eve:1iI: . ia the times of our pte-historic ancestors, a few 
number llames we~ used to build all numeral words. is sug-
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gested by the procedure even at the present day of those 
Africans who in counting use a row of men as follows: The 
first begins with the little finger of the left hand and indicates, 
by raising it and pointing or touching, the assignment of this 
finger as representative of a certain individual from the group 
to be counted; his next finger he assigns to another individual; 
and so on until all his fingers are raised. And now the second 
man raises the little finger of his left hand as representative of 
this whole ten, and the first man, thus relieved, closes his 
fingers and begins over again. When this has been repeated 
ten times, the second man has all his fingers up, and is then 
relieved by one finger of the third man, which finger therefore 
represents a hundred, and so on to a finger of the fourth man, 
which represents a thousand, and to a finger of the fifth man, 
which represents a myriad. 

v. THE ABACUS. 

13. An advance on this actual use of fingers with a posi­
tional value depending on the man's place in the row, is seen 
in the almost universally occu"rring abacus, a rough case of 
which is just a row of grooves in which pebbles can slide. 
With most races, as with the Egyptians and Greeks, the 
grooves and columns are vertical like a row of men. 

14· As in the written additively combined numbers of all 
races the greater precedes the less, so here, for races reading 
from left to right, the pebbles in the right-most column cor­
respond to the fingers of the man who actuany touches or 
checks off the individuals counted; it is the units column. 

IS· But in the abacus a simplification occurs. One finger 
of the second man is raised to picture the whole ten fingers of 
the first man, so that he may lower them and begin again to 
use them in representing individuals. Thus there are two 
designations for ten, either all the fingers of the first man or 
one finger of tbe second man. 
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The abacus omits the first of these equivalents, and so each 
column contains only nine pebbIes. 

16. And just so to-day we use nine digits and have no digit 
corresponding to the Roman X, for X is all the fingers of the 
first man, while we, like the abacus, use la, which is one finger 
of the second man. 

I7· The use of the digits (Latin, digitus, a finger), the sub­
stitution of a single symbol for each of the first nine picture­
groups, and the splendid invention, by the Hindoos, of the 
zero, 0, nought, cypher, made possible our present perfect posi­
tional notation for number, which the decimal point (say 
rather, digital point) empowers to run down below the units. 

18. Cyphering, which thus attains an ease and facility that 
would have astonished a Greek or Roman, consists in com­
bining given numbers according to fixed laws to find certain 
resulting numbers. 

19. That the number of any finite group of distinct things 
is independent of the order in which they are taken, that 
beginning with the little finger of the left hand and going from 
left to right, a group of distinct things comes ultimately to the 
same finger in whatever order they are counted, follows simply 
from the hypothesis that they are distinct things. If a group 
of distinct things com.es to say five when counted in a certain 
order. it will come to five when counted in any other order. 

20. For a general proof of this take as objects the letters 
in the word triallgle and assign to each a finger, beginning 
with the littl'e finger ~f the left hand and ending with the 
middle finger of the right hand. 

Each of these fingers has then its own letter, and the group 
of fingers thus exactly adequate is always necessary and 
sufficient for counting this group of letters in this order. 

That the same fingers are exactly adequate to touch this 
same group of letters in any other order, say the alphabetical, 
follows because, being distinct, any pair attached to two of my 
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fingers in a certain order can also be attached to the same two 
fingers in the other order. 

In the new order I want a to be first. Now the letters t and 
a are by hypothesis distinct. I can therefure interchange the 
fingers to which they were assigned, so that each finger goes to 
the object previously touched by the other, without using any , 
new fingers or setting free any already employed. The same 
is true of rand e, of i and g, etc. As I go to each one I can 
substitute by this process the new one which is wanted in its 
stead in such a way that the required new order shall hold 
good behind me, and since the group is finite, I can go on in 
this way until I come to the end without changing the group 
of fingers used in counting, that is, without altering the number, 
in this case eight. 

21. The group .of fingers exactly a<;Iequate to touch a group 
of objects in anyone definite order is thus exactly adequate for 
every order. But when touching in one definite order each 
finger has its own particular object and each object its own 
particular finger, so that the group of fingers exactly adequate 
for one peculiar order is always necessary and sufficient for 
that one order. But we have shown it then exactly adequate 
for every order, therefore it is exactly"necessary and sufficient 
for every order. 

CHAPTER n. 
THE BEGINNING OF ALGEBRA. 

VI. THE SYMBOLS + AND =. 
22. The natural numbers, for example •. the primiti"e 

pictures I, II, ill, un, begin with a $ingle Qnit, and ~~ 
changed each to the next alway~ by taking aQotb~ siqgl/e,~~.·' . 
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The operation of incorporating this new unit into the pre­
ceding diagram may be indicated by a symbol first used in the 
I5th century, a little Maltese cross ( + ) which is read by the 
Latin word pllts, and called the plus sign. 

23· A number is said to be [qual to, or the same as, a 

number otherwise expressed, when their units being counted 
come to the same finger, the same numeral word. The symbol 
=, read cquals, is called the sign of equality, and takes the part 
of verb in this symbolic language. It was invented an 
Englishman, Robert Recorde, who published it in 1557, some 
say 1540. Equality is a mutual relation always invertable. c\.n 
algebraic sentence using this verb is called an equation. 

Thus we may write 

I=r. 
II=r -:- I=2. 

III=I4- I _L I=2-'-- r=3. 
IIII=I + 1+ 1-'- 1=2 -"- I..L. 1=3+ r=+ 

VlI. lNEQUALITY. 

24· \Vhen the process of counting the units of one number 
simultaneously one-to-one with the units of a second number 
ends because no unit of the second number remains uncounted, 
but the units of the first number are not all counted, then the 
first number is said to contain more units than the Sf"cond 
number, and the second number is said to contain less units 
than the first. 

If a number contains more units than a second. it is called 
[(reatcY than this second, which is caIled the It'Sse7''. 

By adding units to the lesser of two natural numbers we can 
make the greater. 

25. Thoma.'j,Harriot, (r56o-I62I). devised the symbol >. 
published 1631. read 'is greater than', and called the sign of 
inequality. 
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Since the result of counting is independent of the order of 
the individuals counted, therefore of two natural numbers the 
one is always greater than, equal to, or less than the other. 

\Nithout knowing the number Il, we can write either "> 5 Of 

11=5 or 5>n. 
VII!. PARENTHI;;SES. 

26. vVhen we can get a third number from two given 
numbers by a definite operation, the two given numbers joined 
by the sign for the operation and enclosed in parentheses may 
be taken to mean the resull of that combination. 

The result can now be again combined with :-mother given 
number, and so we may get combinations of several numbers, 
though each operation is performed only with two. Thus 
(1+1)"-+-1=::;. 

Parentheses indicate that neither of the two numbers 
enclosed, but only the number produced by their combination, 
is related to anything outside the parentheses. 

\,Vith the understanding that the primary view of any chain 
of operations is that the operations are to be carried out suc­
cessively from left to right. parentheses (first m~ed by Albert 
Girard, 1629) may often be omitted without ambiguity. 

27. The representation of one number by others with 
symbols of combination and operation is caned an expression, 

By enclosing it in parentheses, any algebraic expression 
however complex, in any way representing a number, may be 
operated upon as if it were a single symbol of that number. 

If an expression already involving parentheses is enclosed in 
parentheses, each pair, to distinguish it, can be made different 
in size or shape. 

The three most usual forms are the pare~theses (, the 

bracket [. and the brace {. 
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In translating from Algebra into English, ( should be called 
first parmt/lesis, and ) second parenthesis; [ first bracket, 

] second bracket; { first br~ce, } second brace. 

IX. SUBSTITl'TIO:-;. 

28. No change of resulting value is made in any expression 
by substituting for any number its equal however expressed. 
From this it follows. that two numbers each equal to a third are 
equal to one another. This process, putting one express:on 
for another, substitutioll, is the most primitive yet the most 
important proceeding of algebra. A single symbol may be 
substituted for any algebraic expression whatever. 

29. Permutation consists in a simultaneous carrying out of 
mutual substitution, interchange. 

Thus a. and b in an expression, as abc. are permuted when 
they are interchanged, giving bae. 

:'Iore than two symbols are permuted when each is replaced 
by one of the others, as in abc giving bra or tab. 

CHAPTER III. 

THE nvo DIRECT OPERATIONS. 

X. .\DIJiT10N. 

30 . Suppose we have two natural numbers in their primitive 
form, as III and lUI; if we write all these units in one rm". we 
get another natural number: and this process of putting the two 
groups together to make a single group, of increasing the one 
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group by the other, is called addition. Addition is such a 
taking together of two numbers that the units preserve their 
respective independence, just as objects in the taking together 
involved in counting them. 

31. The result of addition is called a sum, and is attained 
by a repetition of the operation of forming a new group from 
an old by taking with it one more unit. 

Thus the sum of three and two is [( 3 + I) + I], and this is 
what is meant by 3+2, so that 3+2=[(3+ I) + IJ. 

32. If given numbers are written as sums of units. e. g. 
(exempli gratia), 2=1+1, 3=I-i-r-f-l, the result of adding 
then is obtained by writing together, joined by the plus sign, 
these rows of units. Here it is I -+ I -I- I ':c I + 1=5. 

To express the addition of two and three we connect by + 
the parts set down in order each expressed as a whole; thus 
( I + I) _i_ ( I + I -1- I), and the explanation of this expression, or 
the definition of the sLIm is given by the equation 

(1-;-I)+(r-'-1 I)=ITI-'-I~ITI. 

Since number is independent of the order of counting, there­
fore in any natural number expressed in its primitive form, ;lS 

lIII, the permutation of any pair of units produces neither 
visible nor real change. The units of numeration are com­
pletely interchangable. Therefore we may say, adding 
numbers is finding one number which contains in itself as many 
units as the given numbers taken together. . 

,13. In defining addition, we need make no mention of the 
order or the groups in which the given numbers are taken 
together to make the sum. 

A sum is independent of the order of adding. 2 + 3=,) +2. 

;\ sum is independent of the grouping of its parts. 
(+-,-::l)-- +(2+3). For a change in the order or the 
grouping of parts added is only a change in the order or 
the grouping of the unit."i, which change is without influence 
when all are counted together. 
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34· To write wholly in algebra that addition is an operation 

unaffected by permutation or grouping of the parts added, 

though applied to any numbers whatsoever, we cannot use 

numerals, since numerals are always absolutely definite. 

But if, following Vieta, 1579, we use letters as general 

symbols to denote numbers left otherwise indefinite, we may 

write a to represent.the first number not only in the sum 2+ J, 

but in the sum 4 + 2, and in the sum: of any two numbers. 

Tak.ing b for a second number, the algebraic sentence 

a + b=b + a is a statement about all numbers whatsoever. It 

says, addition is a commlltath'e operation. 

35· In a sum of units, brackets inserted anywhere produce 

no change. The general5tatement (a+,~) T c=a -': (b+c) says, 

addition is an associatizle operation. 

XI. FORMULAS. 

36 . For a sum of three numbers the associative and com­

mutative laws of liberty give the following six equivalent 

expressions, 

a+btc=b+c+a=c+a+b 

=a+c-r b=b+a+ c=c+b+ a. 

37· Equalities like the preceding have to do only with the 

very nature of the operations involved, and not at all with the 

particular numbers operated with. 

Such an equation is called a fOY1Jwla. 

38. A formula is characterized by the fact that for any 

letter in it any number whatsoever may be substituted without 

destroyingthe equality or restricting the values of any other 

letter. In a formula a letter as symbol for any number may be 

replaced Qut only by any digital number, but also by any other 

sytl'l~ol for a number whether simple or compound, in the I<l;st 

e~ . bracketed. Since a + b=b+ a, therefore (a -+ £") -i- b= 

b+(afc)-a+b+(. 
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Thus from a formula we can get an indefinite number of 
formulas and special numerical equations. 

39. Each side or member of a formula expresses a method 
of reckoning a number, and the formllia says that both reckon­
ings produce the same result. 

+0. A formula translated from symbols into words gives a 
rule. 

As equality is a mutual relation always invertable, a formula 
will usually give two rules, since its second number may be 
read first. 

+I. Two or more formulas sometimes combine to give a 
single rule, thus 

To sum any set of numbers it is indifferent in what order 
the given numbers are added together. 

+~. By d{'finition, from the inequality 
a>·b 

we know that a could be obtained by adding units to b. 
Calling this unknown group of units u, we have 

a=b-+ 11. 

Inversely, if a=b + 7f 

then a >b: that is, 
a sum of natural numbers is always greater than one of 
its parts. 

But we have proved 

a+(b+u)=(atb)+II, 
and (atu)+b=(a+b)+u, therefore 

at (btu»a+b, 
(a + li) + b>a t b: that is, 

a sum changes if either of its parts changes. 
A sum increases if either of its parts increases. 

XII. MULTIPLICATION. 

43· Sums in which all the parts are equal frequently occur. 
Such additions are laborious and liable to error. 
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But such a sum is determined if we know one of the equal 
parts and the number of parts. The operation of combining 
these two numbers to get the result is called JIlli/tiplimti()ll; the 
result is then called the product. 

The part repeated is called the multiplicand, and the number 
which indicates how oft it occurs is called the multiplier. 

4+ In forming a product, the multiplicand is taken once 
for each 1.jnit in the multiplier. To multiply consists in doing 
with the multiplicand. what is done with the unit to form the 
multiplier. 

Following Wm. Oughtred (1631), we use the sign .', to 
denote mbltiplication, writing it before the multiplier but after 
the multiplicand. 

Thus I X 10, read one multiplied by ten, or simply on{" by 
ten, stands for the product of the multiplication of 1 by TO, 

which by definition equals ten. The multiplication sign may 
be left out when the product cannot reasonably be confounded 
with anything else, thus I a means I a, read one by a, which 
by definition equals 1? From our definition also a I, that is 
a multiplied by I, must equal a. 

46. Multiplication of a number by a number is commutative. 
M u!tiplier and muitiplicand may be interchanged without 

altering the product. 

I I I I I For if we have a rectangular array of a rows 
1 I I I I each containing b units, it is also b columns each 
I I I I I containing a units. Therefore b a=a b. 

47. Taking apposition to mean successive multiplication, 

for example, 

abcde= { [ 

c~dljng the numbers involved factors, and the result their 
product, we may prove that commutative freedom extends to 
<,tnyot all factors in any product. 
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For changing the order of a pair of factors which arc next 
one another does not alter the product. 

abcd=acbd. 
a a a a a For c rows of a's, each row containing b of them, 
a a a a a is /J columns of a's, each column containing c: of 

a a a a a them. 
So c groups of ab units come to the same number as b 

groups of ac: units. 
Consequently d groups of abc units are the ::;ame as d groups 

of acb units. 
This reasoning holds, no matter how many f~lct()rS come 

before or after the interchanged pair. For example, 

abcdtig:::=:abt' ed /g, 
since in this case the product ahc simply takes the place which 
the number b had before. .\nd l' rows with d times aliI" in each 
row come to the' same number as d colums with i! times dile in 
column. 

It remains only to multiply this number successively by 
whatever factors stand to the right of the interch:l.llgcd pair. 

It follows therefore that no matter how many numbers arc 
multiplied together, we may interchange the places of any two 
of them which are adjacent without altering the product. 

But by repeated interchanges of adjacent pairs we mar 
produce any alteration we choose in the order of the factors. 

This. extends the commutative law of freedom to all the 
factors in any product. 

48. To show with equal generality that multiplication is 
associative. we have only to prove that in any product any 
group of the successive factors may be replaced by their 
product. 

abcdejgll=abt" ( dti)glz. 

By the commutative law we may arrange the factors so that 
this group comes first. 
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Thus abcdefglt=de.f abcglt. 
But now the product of this group is made in carrying out 

the multiplication according to definition. 
Therefore abcdc.fglt=dt1abcglt= (dcf)abcgll. 
Considering this bracketed product Ih)W as a single factor of 

the whole product, it can, by the commutative law, be brought 
into any position among the other factors, for example, back 
into the ol.d place: so 

abaltfglt = dtfa1!cglt = (dtl) abcglt=abc( d c.f)gh. 

XIII.. THE DISTRIBUTIVg LAW. 

-f9· Multiplication combines with addition according to 
what is called the distributive law. Instead of multiplying a 
SlIIll and a number we may multiply each part of the sum with 
the number and add these products. 

a( b+c)=(h + c)a=ab+ac. 
·f>< S="'i-( 2 -l J )=-( 2+ 3 )4=2X 4 + J)I' 4=5 ')( + 

Four by five equals five by i-, and four rows of (:2 + 3) units 
may be counted as four rows of two units together with 4 rows 
of 3 units. 

As the sum of two numbers is a number, we may substitute 
( a -,. b) for b in the formula 

(/1+ c)d=bd+cd, which thus gives 
[( a + /I) + cJd:-:( a+ b)d + cd=ad + bd+cd. 

So the distributive law extends to the sum of however many 
numbers. 

The terms 'distribute' and 'commutative' were introduced by 
Servois in 18I;!. 

Rowan Hamilton in 1844 first explicitly stated and named 
the 'associative' law. 
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51. Since 
a(b+c»ab 
(a+ b)b>ab, 

a product changes if either of its factors changes. 
A product increases if either of its factors increases. 

CH"\PTER IV. 

THE TWO INVERSE OPERATIONS. 

XIV. INVERSION. 

and 
therefore 

52. In the preceding direct operations, in addition and mul­
th e simplest problem is, from two given numbers to 

make a third. 
If a and b are the given numbers, and x the unknown 

nU!:l:lber 

.,\'=a+b 
}'t:=fl !:t, according to the operation. 

lJll:~>l!~"SJ? of such a problem is one where the previously 
oo'j~i)t number is given, and aiso .one of the others, to find the 

The which such a problem is solved is 

is like inverting in 
the hyPothesis and 

e.ither 
inverse~ 
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53· Since the two parts of a sum, as also the tvvo factors of 
a product, in accordance with the commutative law, can be 
interchanged, so the inverse problem is the same whichever of 
the two numbers is sought, since we may make the first 
number the second without changing the result of the direct 
operation. 

XI". SCBTRACTION. 

54· Suppose we are given a sum which we designate by fl, 

and one of its parts, say b, to find the other part, which. yet 
unknown, we represent by .\'. 

Since the sum of the numbers b and x can also be expressed 
as b+ .\', ,ve have the equation x-'- b=a. 

But this equation differs in kind from the literal equations 
heretofore used. 

It is not a formula, for any digital number substituted for 
one of these letters restricts the value permissible for the 
others. 

Such an equation is called a ~)Illt/utic equation. 

)). The inverse problem for addition no,,\" consists just in 
this,-to sof;y the synthetic equation b-t x=a, when a and b 
are given; in other words, to find a definite number which 
placed as value for .\' will satisfy the equation, that is which 
added to b will give tI. 

56. If the operation by which from a given sum a and a 
given part b we find a value for .1" is called jrom a b, 
then, using the miNUS sign (-) to denote subtraction, we may 
write the result a·-b, read a minus b. 

57. vVe may get this result, remembering that a number is 
a SLIm of units, by pairing every LInit in b with a unit in a, 

and then counting the unpaired un.its. This gives a number 
which added to b makes II. 

The expression a - b .is called a remainder. 
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The term preceded by the minus sign is called the sub­
trahend. 

By definition, 
and also 
or 

a- -b T b=tl, 
II-T- (a- b)=a, 

!J ..,_. a-- b=tl. 

(To Ii I;' Cli Il tinll ai. ) 
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1. Geometric inversion is a method of transformation by 
means of reciprocal radius vectors. Let 0 be a fixed point 
and P and P' two points on a line through 0; P and P' are said 
to be inverse when OP.OP·=M, M being any constant. It is 
convenient for algebraic and geometric purposes to take 
OP.OP'=r. 

2. Geometrically the operation of inversion may be thus 
represented. Dra\v a unit circle p 
with center O. Let P be any 
point without the circle; join OP; 
from the point P draw tangents 
to the unit circle. M and X 
being the points· of tangency; 
draw lVIN. The point P' at 
which l'vIN intersects 0 P is the FIG. I. 

I I 
inverse of the point P, since OP.OP'=I or OP'=OP or r=;~. 

A.nd conversely, the point P is the inverse of the pointP', It 
may be noticed that every without the circle inverts into 
·a point within the circle alld vice versa. 
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:3. In order to determine the transformation of the variolls 

figures or systems of points, it will be convenient to have ex­

pressions for the relations between the rectangular co-ordinates 

of the two points P and P'. From the relations of rectangular 

and polar co ordinates, we have the equation 

(I) x'+y'=r'(cosO+sintJ). 

. I 
and since r =­

r 

(2 ) 

or (3) 

I 
X' + v' =- (cos tt + sin f/) 

- r' 

, ,r fJ H ,\" + 'l' = .) (cos + sin .') 
- r 

substituting x and)' for their polar equivalents r ('os (j and 

r Sill H, we obtain 

and since ;Pl=.'Y.:l+ y2 

( 5) 

, 
;'1:7 = (6) 

and conversely 

THE INVERSiON OF STRAIGHT LINES. 

LetQS examilllet~e gene.ralequation of the straight line. 
. .J' • . 
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substituting formulae (7) of the last paragraph 

( 2 ) 

or 

A.,: Bv' 
.. ~:r:~, l"--'~ + "~---~>--'-')- -: (':=:o 
, - - .\' --r), -

297 

which is the equation of a circle through the origin. Let the 

circle (Fig. 2) with center 0 be the unit circle and ,\ B any 

straight line. The circle with center C is the inverse of the 

line A 13. Since the circle will be symmetrical with respect to 

OX, which is the perpendicular y 
to A B, the diameter of the 

circle may be measured on OX 

and is the reciprocal of OP. If 

the line A B be tangent to the 

unit circle, the reciprocal of 

OP=I and the diameter of the 

inverse circle is unity. If the 

line A B intersect the unit circle, 

the reciprocal of OP is >1 and FIG. 2. 

the diameter of the inverse circle is > I. If the line AU lie 

without the unit circle, the reciprocal of OP is < I and the 

diameter of the inverse circle is < 1. The greater the distance 

OP, the smaller the diameter of the inverse .circle; if OP=oc , 

the diameter of the inverse circle = d5 =0, and the inverse 

circle is a point; and if OP=o, the diameter of the inverse 

circle = ff =00, and the inverse circle is a straight line. Vie 

may conclude that every straight line inverts into a circle 

passing through the origin: unless the line itself passes 

the origin, in which case the line remains unchanged, although 

the order of its points is changed., From the above it may be 

seen'dl;:lt a system of parallel lines inverts into a system of 

tangent circles passing through the origin whose centers are on 
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a line perpendicular to the parallel lines; and a pencil of lines 
inverts into a system of intersecting circles passing through the 
origin. 

Tfm j0:VERSIO"-: (j~' CIRCLES . 

• ). Substituting formulae 3 ... ( 7) in the general equation 
of a circle 

( I ) 

we obtain 
_-\(x'~-+_}"~) . zGx' zFv' 

(2) (x'L~l,'l)~-~ .\"'2-1-// +C=o 

or ( 3 ) l\ ~ 2 G x· +- 2 Fy' -, C ( ",'2 1 Y 2) =0 

\vhich IS still the equation of a circle. If the circle pass 
through the origin, ('=0 and F=o and the equation of the 
circle is 

( -+ ) .1 ,.L~- 2GX=0 

which becomes upon inversion 

(5 ) 
X'2 /2, zGx' 

(.\~12 _)(~.):! -1 (Y"~+ .. 1';~)'l--t (~:!~L+yt:!)'::::=O 
or 

6) 
which is the equation of a straight line, (converse of the in­
\'ersion nf a straight line). 

The equation uf a circle with the origin as center 
7l \,l--!-~'r 

inverts intu 

( !O) 

,., 
.1~ ~ 

, "J, \ x---
,., 

.r - -" 

the equation of a circle concentric with the given circle and 

whose radiu."> is I. It is evident that if a circle cut the unit 
r 
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circle in two points, the inverse circle will pass through the 
same two points. 

THE At\GLE OF THE l~VERSE CeRVE. 

6. Let and B be two points (Fig. 3) on any curve, and 
;\' and B' corresponding points on the inverse curve. 

or 

OA.01\.'=1 
OB.013'=1 

Or\.OA'=OB.OB', 
OA OB 
OB'=(IA: 

and LOis common to the 
t:,'s OAB and O,\,B'; there- FiG. :;. 
fore the .6's are similar and LOB'.:\'=LO,\B, 

LO IL\' = L OXB' 
and 

If the point B approach .\ the cord .c\B will have for its 
limit the tangent to the curve at f\, and the chord A'B' will be 
approaching at its limit the tangent at the point X; and 
\vill become zero and LAA'B'= LA' },B. \Ve may conclude 
that a radius vector cutting two inverse curves, makes angles 
with the tangents at the points of intersection which are equal 
but measnred in opposite directions; and also that if two curves 
meet, their inverse curves meet at an angle equal to the 
of the first curves and measured in an t)pposite direction. 

7. It is no\\' evident that if a given circle cut the unit circle 
orthogonally at the points A and B, the inverse circle will cut 
the unit circle orthogonally at A and B; and that in order to 
satisfy this condition the inverse circle must coincide with the 
gi\'en circle. Conversely, every circle unchanged by inversion 
cuts the unit circle orthogonally, unless it be the unit circle 
itself. 
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8. If a circle pass through a given point and the inverse of 

that point, the circle and its i\lverse circle will coincide; since 

the circles will have four points in common, the given point and 

its inverse and the two points of intersection on the unit circle. 

Any system of circles through two points and not passing 

through the origin inverts into another system of circles 

through two points. Any system of drcles tangent to the unit 

circle inverts into a system of circles having internal contact 

with the unit circle at the point of tangency of the given 

system. 
INVERSION OF CONlC S.ECTIONS. 

9. Substituting formulae 3 .. (7) in the general equation 

of the second degree, 

( I ) ax2 + 2bxy + by 2+ 2gx + 2fy + c=O 

we obtain 

(z) flXl +zb:t:y+by2+ (zgx+ 2JY)(X2-+ y2) + c(x2+ y2)=0 

the equation of a bicircular, nodal quartic. 

T~ansferriDg the origin to a point on the curve, the equation 

becomes, 

(3) a:iA + zbx.1 + pY T 2gX+ 2/)'=0 

and substituting formulae 3· .. (7) 
(4) a:iA+2bxy+ py2+ (zgx+ 2h')(x2 + y2)=0, 

an equation of the third degree, the equation of a circular, 

nodal cubic. 

Since in the equation, ~ the inverse curve the absolute term 

and the terms of the 6..- 4tgree 'Vanish. tJ:te inverse curve .has a 

double point. _Thi.s,d~lJible poi~t is ... an a~ode. crunode or 

cusp, according a$ tM i.~nalcuweils ,341, elll~~h)fperhoia or . , 
parabola. 
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10. THE ELLIPSE.-The equation of the ellipse referred to 
the axes 

( I ) 

becomes upon inversion 
(2) b'2.\,'.!. + a~J!2~a~b2( .;:4 -+- 2X:!JP 4_),4 ), 

one of the foci being taken as origin, the equation of the 
ellipse becomes 

(3) b~(.\'-t)2+a2y2=aW 

inverting 
(4) b2'y2_-3b2o:(X2 J2) _t-tl)2=(a2/;L-b!c2)(x2+y2) 

the equation of a //mt?!;oll. 

11. 

( r ) 

THE HYPERBOLA.-The equation of the hyperb01a 
~.2 y'l 
a2 --b~=l 

being similar to that of the ellipse excepting in the sign of the 
coefficient of y will evidently invert into the same forms as the 
equation of the: ellipse. The equilateral hyperbola whose 
equation is 

( 2 ) 

inverts into 

(3) 

the equation of the Lemniscate of Bernoulli. 

12. THE PARABoLA.-Inverting the equation of the para­
bola with vertex as origin 

(r) y2=4Px 
we obtain the equation of the Cissoid of Diodes. 

( 2) . y2=4P.t.i!+ 4pxy2, 

transfering the origin to the focus the equation of the parabola 
becomes 
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inverting 

(+ ) J!2=4P.1;·3 + +p.\)':; + 4p2.1'4 -:- 8p~.\"2f + +p2f l 

the equation of the cardioid. 

INVERSE OF HIGHER CURVES. 

13. Considering the general equation of a cubic 

( I) .\:1'2='\Xii + 3Bz2 + 3Cx + D 

and inverting, we obtain 

(2) .\:J':!=A.\·~+ 3 Bx2( ;\.2 +.1'2) + .3 c.,. ( ,\'2 + .1'2)2 + D (,\.2 + y2)il 

which is an equation of the sixth degree. Inverting the general 
equation of the cubic with the origin on the curve (D=o) we 
obtain 

(3) y2=A.v2+3B;\,(.\·Lf f)+ 3(·\·2+)'2)2 

an equation of the fourth degree. 
Several special forms of the cubic invert into curves of lower 

order than the sixth. The inverse curves of the conics assume 
upon the second inversion the original conic form or become 
curves of the fourth degree. 

14. The transformation by inversion of a curve of the 11th 
degree will exhibit the various forms which the lziglur wrN'S 

may assume. We write the general equation in the form 

( I) 

in which 1I1i denotes the absolute term and 111, 112, l/H, etc., denote 
the terms of the first. second, third, etc., degrees. The inverse 
of a curve of the llth degree is in general a curve of the 211th 
degree, the equation assuming the form 

(2) + 1In=0 

if the center of the inversion be on the curve, lfu=O and the 
inverse curve is of the degree 21l- 1. If the center of inversion 
be adouble point on the given curve, 710=':"0 and lfl=O and the 
inverse curve is of the degree 21l - 2; if the center of inversion 
be a multiple point of the order k, the degree of the inverse 
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curve is of the order 2/l'- k. Since a curve of nth degree can 
have no multiple point of higher order than Jl-I, the degree of 
the inverse curve cannot be less than :W-(U--I) or (71+ I). 

If the given curve of the 11th degree be circular the degree of 
the inverse curve in each case given above is diminished by 2. 

The inverse of a curve of the 1tth degree has a multiple point 
of the order k at the center of inversion. If the given curve 

has it multiple point of order I.: not at the center of inversion, 
the inverse curve will have a multiple point of the same order. 

15. I-laving two inverse curves with tangent circles at in­
verse points, the tangent circles are inverse to each other with 

respect to the origin of the first curves. The radius of curv­
ature ()f a curve at any point is measured on an osculating 
circle; the radills of curvature on the i'werse curve may be 
rnen~urecl on the inverse of the osculating circle. If the OSCll­

lating circle pass through the origin, it inverts into a straight 
line; and the point invel"!1e to the point of osculation is a point 

of inflexion, since its radius of curvature is infinite as denoted 
by the straight line. 

APPl.ICATIONS. 

HL It is as a method of proof that inversion shows its 
power. In deducing the properties of higher curves from 

those of lower order whose properties are well known and 
readily found, it may be considered a useful instrument in 
madem gl'omt!!:)'; and is superior in this respect to jJrojtctioJl 

aile! raijJmtatioll, both of which prove the properties of curves 
from those of the same order, 

Properties \\'hich concern the magnitude of lines and curves 
are in general not transferable by inversion; but it is evident 
that lines through the origin furnish exceptions to this general 

rule, lines through the origin being unchanged by inversion. 
1\lso a certain proportion may give a set of corresponding pro-
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portionals in the inverse figure. All properties relating to the 
relative position of lines and curves are readily inverted; and 
these properties furnish sufficient material for the further de­
velopmeI}t of properties and measurements on the inverse 
curve. 

17. In the examples· given below use is made of the pre­
ceding proofs without any reference to particular propositions. 
We first give a full explanation of one case of the transference 
of the properties of a conic to a higher curve by the method of 
inversion. 

Tile tallgCllts to a parabola at tile e.\"tremities of a focal cllord 
'lvlliell makes ail agle {} willt tlte axis an: il/elilud at angles of 
fI ;: fJ 
- and -- to tlu ellord. The parabola inverted with the focus 
2 2 2 

as origin becomes a cardioid having its cusp at the origin 
[12+ (4) J; the focal chord becomes a cuspidal chord in the 
cardioid retaining the inclination H[4:6J; the tangents to the 
parabola invert into circles touching the cardioid at the:: ex-

II .. tI 
tremities of the cuspidal chord and ~t angles of 2 and "2 - 2' 
Since the angle at which a drcle meets a line may he measured 
by the angle l)lade by a tangent at the point of meeting. and 
since the tangent of the tangent circle will be a1.so the tangent 
of the cardioid, it is true that the trmgmts to a cardioid at Ilu: 
e.\'tremities of a eltspidal clzord which makes tm anglt: 8 'lCJilh 

tJ "II 
tlte axis are illclined at tl1Z erles of - and - - - to the cuspidal 

l>' 2 2 2 

chord. 

18. EXAMPLES: 

(I.) There are three points on a conic whose osculating 
c.ircles pass through a given point on the curve; these three 
points lie on a circle passing through the given point. 
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l!l1!crse~v .. --The three real points of inflexion of a circular, 
nodal cubic lie on a straight line. 

e 2.) The eight point.s of contact of two conics' with their 
four common tangents lie on another conic. 

fJl','crsc(v.··The eight points at which two bicircular quartics 
having the same double point, come in contact with their four 

common tangent circles passing through the origin, lie on a 
third bicircular quartic having the same double point. 

(3·) If two vertices of a triangle move along fixed right 
lines while the sides pass each through a fixed point the locus 
uf the third vertex is a conic section. 

//l'iJI'r.l'c/:v,-( a) -If a system of three intersecting circles 

moves so that two of either set of the points of intersection 
move along two fixed lines and the circles each pass through a 
tlxed point, the locus of the third intersecting point of the 
system is a bicirclliar q llartic. 

fmJl'rsl (1',- (b )-1\ system of three circles each passing 
through <t fixed point and also through the point of intersection 

of two fixed lines, along which two of the points of intersection 
of the circles move; the locus of the third point of intersection 
is a bidrcular qllartic. 

(+) If ,\, n, C be three conics liaving each double contact 
with S, a fourth conic, and if A and B both touch C, the line 
joining the points of contact will pass through an intersection 
of common tangents. 

J111Ierse~v,-Three nodal, bicircular quartics, A, B, C having 
double contact with a fourth quartic S of the same kind, all 
having common double points, and A and 13 touching C; the 

line joining the points of contact will pass through an inter­

section of common tangents. 
(5.) The 10cLls of the points of contact of tangents to a 

series of con focal ellipses from a fixed POl11t on the major axis 

is a circle. 
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bzverse&.-Each of a series of lima!;,olls having a common 
axis and double point is touched by one of a series of circles 
passing through the double point and a fixed point on the axis; 
the points of contact are on the circumference of a circle. 

(6.) If an equilateral hyperbola circumscribe a triangle, it 
will also .pass through the intersection of the perpendiculars. 

h17.,ersefJl.-Given three circles through the double point of a 
lmmiscate, intersecting the latter in three fixed points; three 
other circles through the same double point and through the 
same three fixed points, and at right angles to the first set 
intersect in a common point on the lemniscate. 

HARMONIC PROPERTIES. 

19. If the origin 0 be considered the vertex of an 
harmonic pencil O-ABeD, it is, evident that the points A. B, 
e, D on the transversal AD will 0 

have corresponding inverse points 
on the rays of the given ·pencil. 
The inverse of the transversal 
AD is the circle passing through 
the vertex 0, the diameters and 
chords of which circle will be cut 
harmonically by the rays of the 
pencil 0 - ABeD and will serve FIG.f-
to establish an-harmonic properties in tlle inverse figures. 
Following thi:-; line of reasoning. we find by inverskm that all 
anharmonic points on a conic will have corresponding points 
all a cubic or quartic, that all harmonic points on tbe cubic will 
have corresponding points on the curves of the fourth, fifth or 
sixth degree, etc. All lines in c.onics which are cut harmoni­
cally will have corresponding circles iu the illvel!'S€) figures and 
these circles will have harmonic points correl>~l'!diJi:lg tQ dtO$e' 

in the lines. By inversion. certain forms oJ theli>e curv~s with 
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their circles and lines will become higher curves with circles 
showing corresponding harmonic points, etc. 

But sillce a line in one figure will not always have a cor­
responding line in the inverse figures, the harmonic properties 
of the higher curves cannot always be obtained directly, but 
may be derived easily from tl~e inverse circles corresponding 
to the lines in the lower curves or conics. 

20. In the following examples the term "harmonic points 
of a circle" is used in reference to the points on a circle 
through which an harmonic point may be drawn. The term is 
similar to that of "point:> in involution on a circle" in the usual 
applications of that term. 

EXAMPLES: 

( r.) If three conics pass through four fixed points, the 
common tangent to any two is cut harmonically by the third. 

III"(1I·rsdy.-If thrt'e nodal, circular cubics have a common 
double point and pass throllgh three other fixed points, the 
common tangent circle through the common double point to 
any two of the cubics is cut harmunically by the third 

(2.) A system of conics passing through four fixed 'points 
meets any transversal in a system of points in involution. 

I!l'lil'rst'~y -A system of bicircular, nodal quartics having a 
common double point and passing thl'Ough three other fixed 
points is cut by nny transversal or circle through the double 
point in a system of points in involution. 

( 3.) Given two conics having double contact with each 
other, any chord of one which touches the other is cut har­
monically at the points of contact and where it meets the chord 
of contact of the (.;onics. 

ImJt'rst'!.J'.-Two nodal, circular cubics having double contact 
with each other, one point of contact being a common double 
point, any circle through the origin touchillg one of them and 
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. 
cut by the other is cut harmonically at the points of contact 
and where it meets the chord of contact. 

. (4-) A variable chord drawn through a fixed point 0 to a 
conic subtends a pencil in involution at any point on the curve. 

blVerSe~l'.-A system of circles through the double point of 
a nodal, circular cubic and any other fixed point is cut by the 
cubic in pairs of points which determine a pencil in involution. 

(5·) Given four points of a conic; the anharmonic ratio of 
the pencil joining them to any fifth point is constant. 

btversc~v.-Given four circles through the double point and 
four fixed points of a nodal circular cubic and intersecting in 
any point P on the cubic, the anharmonic ratio of the pencil of 
tangents to the four circles at P is constant. Also any line 
through the double point cuts the four circles i'1 points whose 
anharmonic ratio is constant. 

(6.) Four fixed tangents to a conic cut Cl.ny fifth in points 
whose anharmonic ratio is constant. 

IJl"l't'rse~)'.-Four fixed circles tangent to a quartic and 
passing through the ongm are cut by a fifth tangent circle 
through the origin in points whose anharmonic ratio is 
constant. 

(7.) If A and 13 be two conics having each double contact 
with S, a third conic, the chords of contact of A and B with S, 
and their chords of intersection with each other meet in a point 
and form an harmonic pencil. 

bwcrsc(y.-Given three bicircular; nodal quartics A, Band S 
having a common double point and A and B each having 
double contact with S so that the chords of contact of A and B 
with S pass through the common double point; then the chords 
of intersection of A and B also pass through the common 
double point and the four lines form an harmonic pencil. 

21. It is now evident that the properties of conics may be 
extended to curves' of the third and fourth degrees by the 
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process of inversion. The inverse curves of the conics will 
themselves invert into the form of the original conics or into 
quartics. But other forms of the cubic and quartic whose 
properties may be obtained through a comparison with the in­
verse conic, will invert into still higher curves. ~\nd from the 
inversion of the general equation, we judge that particular 
forms of these curves will invert into still higher curves. 

22. TIlt' mL'tltod of im'crsicilt may be applied to gcoi/UbT of 
three dimensions. All points on a given surface may be in­
verted and produce an inverse surface. Planes, spheres and 
various curved surfaces will produce upon inversion forms ana­
logous to the inverse figures of lines, circles and conics. An 
interesting series of developments in geometry of three dimen­
sions might be thus obtained. The transformation would be 
very similar to those on one plane and furnish no new elements 
to the theory of geometric inversion. 



THE PNEUIUATI(1-HYDI{AULI(1 SAND-LIFT.* 

By PROF. \V. H. ECHOLS, l'xIVERSITY OF VIRGI);IA. 

When sinking the caissons for the foundations of the St. 
Louis bridge the engineers made use of what was called the 
hydraulic .sand-lift, or simply the sand pump, for lifting to 
surface the material excavated in the interior of the caisson. 
The construction of the machine was in principle quite simple. 
A pipe of certain diameter (in the present case the diameter 
was.3§' inches), open at both ends, is sunk in the water until 
one end is ilt the bottom where the material is to be excavated, 
while the other end projects above the free level of the water 
surface just enough to permit of the disposal of its flow. In 
the lower end of the pipe or through its side near the lower 
end is inserted the nozzle of a smaller pipe, the direction of 
which is as nearly as may be in the axis of the larger. This 
smaller pipe is connected with a force pump at surface, which 
forces through the smaller pipe a flow of water under high 
velocity and injects it into the larger pipe at or near its lower 
end. The result is a flow of water out of the upper end of the 
larger pipe, part of which flow is the water injected by the 
pump and part of which is drawn into the lower end of the 

*A paper read before the Philos;ophical Sodet:v of the Universlty of 
Virginia. 
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flow pipe from the reservoir in which the operation takes 

place; and if there be sand, silt detritus of small grain, etc., in 

the reservoir water sucked into the lower end of the flow pipe 

this wiII be carried to surface and discharged there also. 

The principle of the action of the water jet in giving motion 

to the column of water in the flo,,, pipe is not so simply de­

termined. It appears that the discharge of the jet of high 

velocity into the larger volume of liquid of comparatively low 

velocity is, by reason ()f the viscosity of the water, rapidly 

spread out laterally. This lateral spread being confined by the 

walls of the flow pipe serves as a sort of fluid piston through 

which the kinetic energy of the jet is transformed partly into a 

static lifting pressure on the overlying column and partly into 

the kinetic energy of the overflow. It is clear that the action 

of the pump depends upon the kimtic cllcrgy of the injected 

mass of water which is utilized through the viscosity of water. 

The efficiency of the machine depellds upon the completeness 

with which the viscosity of the water permits the transforming 

of the energy of the jet to that of useful work in the water of 

the flowpipe column. This is a function of the size of the pipe 

and shape of the nozzle, as for instance flaring the nozzle 

should distribute the high \·elocity water of the jet more 

quickly and effectively over the cross section of the flow pipe. 

r regret that I am without data on the application and per­

formance of this pump, which has been frequently used in like 

engineering constructions since that of the St. Louis bridge. 

Mr. R. H. Elliott made considerable use of it in sinking the 

cylinders of bridge piers on the Louisville,'~ ew Orleans and 

Texas Ry., in Mississippi. Trautwine's Engineer's Pocket 

Book states,that. "With a pump pipe of 3J inches bore, and a 

water jet of 1.50 Ibs per sq. in., 20 cubic yards of sand per hour 

were raised 125 feet. * * *A jet of air has also. been 

successfully ulled in the same way, as at the Xew York sus­

pension bridge, et~ .. " 
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A water jet under 150 lbs. intensity of pressure means a 
statical head of 345 feet and a corresponding velocity of about 
150 feet per second lineal discharge of jet. The lift of 125 

feet, means of course the lift of the sand through the whole 
length of the pipe. The lift above the free level surface is not 
given. 

The second part of the quotation introduces the subject im­
mediately in hand. If a jet of air be used instead of water, the 
discharge of sand, water and air through the flow pipe follows 
in a manner similar to that when water is used. 

To the aparatus described below, the name Hydro­
Pneumatic Lift, has been applied by Mr. Elmo G. Harris, who 
experimented with it while sinking the piers for the foundation 
of a bridge over the Arkansas River near Pine Bluff. 

Mr. Harris employed an iron pipe of 3 inch bore, 20 feet in 
length. About 6 inches above the lower end of the pipe an 
inch pipe was let into the side of the 3 inch pipe and at right 
angles to it. The flow pipe was allowed to rest directly on the 
sand, at the bottom, with its own weight in I6 feet of water; 
thus the upper end of the pipe was four feet above free surface 
level. A flexible hose was attached to the inch pipe and an air 
supply driven through it by means of an ordinary force air 
pump which was used for supplying the air for a diver's helmet. 
The result was an abundant discharge of water and sand from 
the flow pipe, intermingled with air. As the flow pipe slink in 
the sand at the bottom it was moved about from place to place 
over the area to be excavated. 

Mr. Harris used no means of measuring the quantities of air 
supplied nor water and sand delivered. He merely states that 
he estimates the discharge to be about equal partsof sand and 
water. 

If this be true, then as an excavator or dredge of river sift, 
:Sand. Mud or any ordinary sedimentary detritus. we have no 
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superior. Its value will be found not only in the construction 
of bridge foundations, in dredging caissons, etc., but also in the 
largc:t operations of dredging rivel' channels, harbor bars and 
the like. 1\ valuable application in the industrial arts would be 
the raising of liquids through means of a pump without valves, 
and to which the aeration from the air used would be no 
injury, whereas the liquid or water injector would dilute and 
otherwise irnpair. Such might be pu~ps for raising, through 
low lifts, acids, beer, molasses, etc. 

The iclea of such a lift is not a new one. In Callan's 
Lectures on :\1 ining delivered at the School of ]\lines in Paris 
(sec English translation, Paris, 1876, pp. 307-308), in his de­
scription of Triger's method of sinking a mining shaft through 
vcry a<JlliferOlls strata at Chalonnes, by means of a pneumatic 
cylinder, he gives the following design for expelli1.1g' water and 
sand fn)1l1 the ImVt;st compartment (see also diagram of Triger's 
cylinder, Tralltwine's Pocket Book, p. 6-f8). 

:\ pipe is n1l1 down inside the cylinder from surface to its 
bottom, in the lowest compartment there is a cock for the 
admission of air. 

"* * * Besides the details given above we may mention· 
tlh~ r:ontrivance by means of which the pit canbe kept dry, in 
certain cases, without requiring to increase the pressure of the 
air in the interior, to the whole extent due to the pressure of 
the water. The tube A allows the water to flow out as it ac­
cumulates and is acted on by the greater pressure of air in the 
shaft. The ascending column of water acts like a blowing 
machine, drawing in air by the cock B, which is opened to a 
suitable extent. The effect of this aspiration is to change the 
mass of the liquid into a kind of froth having a less density 
than water, thus allowing it to be raised to the surface where it 
nows out. * * Another artifice, somewhat similar to the 
above, consists in employing the tube not for the eXit of the 
water which cannot escape through the surrounding ground, 
but for getting rid of the solid matter itself. It is possible with 
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very running sands, to establish a current of air in the tube 
which crtrries up the sand and water together to the surface". 

'\Iy attention having been called to this pump by ~rr. Harris,. 
I determined to make a series of experiments on a small scale 
for the sake of the theoretical interest which they might afford 
as well as for the practical bearing their results might have on 
the action of the machine on larger scale. 

I propose now to present the explanation of the underlying 
principle of the action of the pump, the results of one series of 
experiments on a particular case and to exhibit by actual ex­
periment the pump in operation, 

It is evident in the beginning that the cause of the action of 
the pump under the air and under the ,vater motor must be 
entirely different. The latter, acting through its A'illetz"C 
ellergy, which. it communicates to the water in the ,flow pipe 
through fluid friction, mllst be iJlj£cted with high velocity; while 
the former acting through its potmtia! eIlt'rgy alone (velocity of 
injection plays no part, at least no appreciative part, in the 
working of the pump in so far as its kinetic energy is con­
cerned) need only to be delivered in sufficient quantity at a 
certain depth below free surface l,eveL 

Referring'to Fig. I., where are represented seven different 
stages of the action of the pump; consider, first, pipe I, in 
which we have a vertical cylindrical pipe open at both ends 
submerged until the lower end is d units below the surface of 
the water in the reservoir, while the upper end stands Iz units 
a bove that level. 

Insert a bubble of air (whose volume is something greater 
than that of a sphere whose radius is the pipe-radius) in the 
tube as represented by I in pipe II. The pressure on the base 
of pipe II from the reservoir side is the same as that on the 
base of pipe I, in order therefore that equilibrium may exist in 
II, there must he the same weight of water in II that there is 
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in I (less the weight of the air in the bubble), provided no flow 
of water takes place around the bubble. 

The weight of an air bubble will be neglected in comparison 
with the weight of an equal volume of water, since the latter is 
773 times as heavy as the air. This being the case, the free 
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level in tube II must stand above the free level H in the 
reservoir by an amount such that the volume of water in. II 
which is above H, is ~qual to the volume of the bubble I. 

If the bubble filled the tube completely it would remain 
stationary where it is, in equilibrium, transmitting the' pressure 
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unchanged between the liquid above and below it. However, 
the bubble never completely fills the tube, but is always 
bounded by a thin film or skin of liquid which lines the pipe 
around the bubble, so that there is always a thin liquid com­
munication between the water above and that below the bubble. 
This being the case, there will be a slow transfer through this 
communication of the liquid above to that below the bubble, in 
the effort to restore the equilibrium of the water columns, 
which is accompanied by a corresponding slow subsidence in 
the free level in the tube. which in turn gives rise to an un­
balanced upward pressure on the bubble equal to the weight of 
water transferred from above to below it. The bubble will 
then slowly move lip the tube. The loss by leakage of the 
liquid around .the bubble is partly restored by the expansion of 
the bubble as it rises, which restores the free levei in the tube 
in some degree. This leakage is very small, under the circum­
stances which we are now considering, for glass tubes, as the 
sequel will show. It plays no par:t appreciably in explaining 
the subsequent action of the pump and is introduced' now to 
merely account for the fact that the bubble will slowly creep 
up the tube. 

So soon as I is out of the way and has reached a position 
such as it has in pipe III, insert another bubble 2, with the 
result that the volume of water which is above· H in pipe III is 
now equal to the volumes of bubble's I and 2. Continue to 
insert bubbles 3, 4, etc., until as in pipe IV the volume of the 
bubbles in the pipe is equivalent to the volume of the pipe of 
length h, when the free level of the liquid in the pipe is at its 
upper end or the pipe stands full. 

The insertion now of another bubble 5 causes a discharge of 
water from the summit of the pipe whose volume is the volume 
of bubble 5. The displacement of this water, leaves the 
contents of the pipe unbalanced and the whole pipe column is 
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driven upward with a constant pressure equal to the weight of 

a volume of water equal in volume to bubble 5; so that all the 

water in the pipe above bubble I is driven out with an ac­

celerated velocity, until finally bubble I itself escapes, when 

equilibrium will be restored by the free level in the pipe VI 

standing above H at such a height that the volume of water 

between these levels is equal to that of bubbles 2, 3, -l- and 5 

together. 

If now instead of ceasing with bubble 5, \ve continue to 

supply with morc or less regularity bubbles 6, 7, 8, 9 and so 

on, until there are at all times lZ bubbles in the pipe, the 

volume of any III of which is equivalent to the capacity of a 

length of pipe It; then the contents of the pipe are driven up­

ward at all times by a COil stant pressure which is represented 

by the weight of a volume of water equivalent to the volume of 

the remaining 11 1Jl bubbles. 

With the escape of each bubble from the top of the pipe 

there is a break in the water continuity of the i10w, but if the 

supply of bubbles be uniform and steady and such that in the 

tll be the distance from the bottom of one bubble to the bottom­

of the next is a divisor of d + Il the length of the pipe; then the 

escape of the 1!th bubble and the insertion of the 211th are 

simultaneous and there is no appearance of intermittency in 

the discharge of the water. 

If the volume of the bubble should not be so large as that of 

a sphere whose radius is the pipe-radius, or does not fill the 

bore, then the leakage around the bubble takes place rapidly 

and the level of the liquid in the pipe is quickly restored to 

that of the reservoir. Indeed if the bubble is small with 

respect to the pipe there is no appreciable lifting of the level of 

the liquid in the pipe, the rise of the bubble is rapid and takes 

place in a manner more nearly approximating to that of a 

bubble in a large reservoir. 
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Returning now to consideration of the pump at work as in 
Fig. r, pipe VII; let there be delivered at the depth d, uni­
formly, .A cubic units of air in any definite length of time T, 
and a corresponding delivery of \V cubic units of water at the 
height h in the same time. Let V be the uniform linear 
velocity of flow in the pipe and T the duration of flow in 
seconds. 

The work done in deliverin"g the A volumes of air at depth 
d, is restored in lifting \V volumes of \vater through height It 
and giving it the velocity V, and in addition, part of the poten­
tial energy of the delivered air is dissipated through the 
loss of water by leakage around the bubbles, and part of it is 
consumed in overcoming the frictional resistances to the motion 
of the fluids through the pipe. If we represent the loss of 
potential energy through leakage by I and the work done in 
overcoming friction by r, we have, if 1£1 be the weight of a unit 
volume of water, 

Where 

.-\ + W 
V=-.iTt--' 

$! being the area of cross-section of the pipe. The fact that 
the bubbles of air have velocity relative to the water makes 
this value for V a li'ttlt' too large in the ordinary cases of steady 
flow. The term l' is so very small that it need not be con­
sidered with respect to I which is in general not smalL 

The efficiency of the machine as a pump is 
W 

E=dA.( h+ Iz ... ), 

h ... being the velocity head. 
The series of experiments, to the results of which I invite 

your attention, consist of some fifty determinations of the 
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quantities A, Wand T for a particular pipe, the history of 
which is as follows. 

The unit is the centimetri. linear and cubic. The time was 
determined with a stop watch readig to tth of one second. 

The flow pipe was a glass tube, of the general shape of the 
tube marked 4 in Fig. 2, the diameter and cross-sectional area 
of which were determined by filling the tube with water for 
97·9 c. of its length, measuring the volume of the water and 
computing the diameter and section. The amount of water 
used was 39~c. c., giving a section of 0.4035 sq. c . ., a diameter 
of 0.7168 c. The upper end of the tube was turned to a wide 
flare and the lower end slightly flared to a tapering funnel to 
better receive the air bubbles. The length of the pipe /z+ d 
was 60 c. 

The most complete set of determinations were made with 
h-= l2 c. and d ~48 c., or one-fifth of the pipe above surface 
level. . 

The air was delivered at the depth of 48 c. uniformly and 
steadily by aid of the auxiliary apparatus exhibited in Fig. 2., 

which consisted of a pair of graduated flasks.A and B, which 
were scaled to read cubic centinletre contents; A was filled 
with water and tightly corked. Through the cork passed two 
tubes, I opening freely in the air outside and also inside at a 
depth c below the level of the water in A, 2 passing frolJl the 
bottom of A through the cork down through the cork of B, 
into B, opening freely. Tube 3 opens freely in B at one end 
and freely in the reservoir of water R at the other end just 
under the mouth of the flow pipe. The axis of delivery of 3 
being horizontal so as to avoid even the appearance of jet 
action being considered. The tube· 2 acting as a syphon out 
of A has a rubber joint provided with one or more set screw 
clamps which may be used to regulate the ~perture at will or 
cut it off altogether if desirable and thus giving a means of 
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instantly starting or stopping 
ment, the discharge from 
pipe 4 was caught in a 
graduated flask, and an 
auxiliary water supply kept 
the level of the water in 
the reservoir at a constant 
elevation. The capacity of 
A and that of B was some­
thing over 2000 c.C. 

the flow. During the measure-

It is evident that when 
the syphon 2 is running 
and the air being delivered 
in R, the intensity of 
pressure throughout the air 
space in B is d hydrostatic 
units, so that the water 
flows out of A into B under 
a static head of pressure 

a-c-d or b-d, 
which is constant, and in 

11 
I . 
1 , 

V. 

.13: 
• • e 

- :::.. 

this particular experiment FIG. 2. 

-I 
=1 

.4 ~J 
I 0> I 

J ~: 
I 0 I 
Il(]o ..v 
I 

:4 
I 

til 
I 
I 
I 

was !O4 c. Therefore the number of C.c of air delivered under 
the flow pipe 4 is equal to the number of C.c of water passed 
from A to B (the change in air volume being inappreciable). 
The velocity of this uniform flow was regulated by the clamp 
on tube 2. 

An experiment consisted in starting the flow until all the 
tubes were full, clamping the rubber connection in 2, reading A 
and B, springing the watch and releasing the tube at the same 
instant. The flow of 4 was caught. The end of the experi­
ment consisted in merely clamping the tube and stopping the 
watch simultaneously, and the readings being made at leisure. 
These details are entered into with minuteness !U order to 
show how nearly the accuracy of the results may be de­
pended on. 
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In the following table the column A contains the number of 
C.c of air delivered per second; as computed from the quantities 
Qa Qw which represent the total number of C.c of air delivered 
and water discharged during T seconds respectively. 

TABLE 1. 
12 cm. out an<148 cm. ill the water. 

No. I A I w I Qa I Qw I T 
1 

I 
18·7 I 20;6 1350 1480 

I 
72 

2 19.2 I 20·5 1500 1600 78 i 
3 19·3 

I 

20.0 1450 1500 75 
4 19·5 19·9 1600 1630 82 
5 19.0 19·9 1600 1670 84 

I 
6 19.0 I 19.6 1500 1550 79 
7 16.8 

! 
19.6 1425 1660 85 

8 14.6 18·7 1500 1920 10s-t 
9 15.2 I 18.6 1550 19°0 102~ 

10 Itl. 7 i 18.3 1400 1370 I 75 
I i 

1 1 12.1 17.0 1600 2130 125 
12 11.0 16,4 1500 2200 136 
13 7.6 15.0 1350 2600 178 
14 7·9 15.0 1350 2530 170 
IS 7·1 ;[4.0 650 1270 91 
16 6.2 13.6 550 1210 89t 
17 5·9 13·4 500 1140 85t 
18 5~7 13·4 500 n80 87 
19 6.2 I 13·3 1000 21 40 I 161 

I 166 20 6.0 I 13·3 1000 2200 
21 6.5 ! 13. 1 1250 2530 193 
22 6·4 i 12.6 1250 2450 193t 
23 5·5 12.1 1600 3510 291 
24 5·3 II-4 575 1330 108 

: 880 79 25 5.0 11.2 400 
26 3·7 8·7 600 1400 16I 

: 8.2 900 2350 288 27 3.1 
28* i 2·9 5·9 1225 2459 420 
29* '1.5 3. 1 270 660 lSI 

30* 0·9 1.8 600 lI80 658 

31 0-4 0·3 250 220 634 
32 0.26 i 0,0 200 0 755 
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The discharge from the flow pipe was uniform and steady 
from I to 26 inclusiye. In 27 a slight wavering of the contents 
of the column could be occasionally observed showing that this 
was just at the limit of steady flow. A slight further constric· 
tion of the clamp gave X o. 28, which was perfectly regular and 
periodic, the discharge occurring at the uniform rate of 22 

strokes per minute throughout the experiment. No. 29 was 
regular .and periodic, discharging at the uniform rate of 15 
strokes per minute. The discharge of No. 30 was periodic 
and very slow, the strokes were not counted. No. 3I was 
irregular, some strokes discharging water and others failing to 
do so. No. 32 was so adjusted that the supply of air was just 
sufficient to keep the water level in the flow pipe at its summit; 
thus the number of C.c of air 0.26 represents just the leakage 
for this particular experiment. Observe that in the periodic 
flows. the discharge computed per second can only be taken to 
represent a mean or average velocity of discharge during the 
whole experiment. 

The periodic discharge appeared to be caused by an in­
sufficient air supply. The bubbles appeared to interfere and 
jostle each other in the lower end of the flow pipe funnel and 
would accumulate there until the upward pressure was suf­
ficient to drive out the contents of the pipe. 

The bubbles which jilled the bore were shaped like conical 
rifle balls while those which did not fill the bore were len­
ticular shaped revolutes whose equators were horizontal. the 
surfaces above the equators being much more curved than 
thGse below. These latter bubbles vibrated with great rapidity 
as they ascended the tube, this phenomenon was most observ­
able in the periodic flows, where in the interval between the 
strokes the bubbles were nearly stationary in the tube. This 
vibration was evidently caused by the leakage around the 
bubbles. At no time was there any tendency of a bubble to 
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break, but on the contrary the tendency was to unite when they 

approached each other closely. 

In order to illustrate the results of these experiments more 

clearly, I have plotted the rate-flows to axes of A as abscissa 

and W as ordinate, 

Fig. 3. I have drawn 71 

approximately the 

locus of mean posi­

tion, by a straight 

1 i 11 e between the 

points (0.25,0.0) and 

('l·O, 10.0) and thence 

a pal"abola tangent 

thereto. 

The equation to 

this parabola referred 

to tangent and ho~i­

zontal diameter is 

}'~=IOX, 

which transferred to 

I 

, 
I 

I 

I~~ 
{ .. 
I 
t. 

FIG. 3. 

A and Waxes, gives "\ in terms of W. 

Thus, 

A=}('~W+l) +0.II4(W-IO)2 . } 
21 } 21 

o . w 

The bl"ace after each term with the high and low limits 

assigned, mere indicates the limits for W between which that 

term is to be used. The second term is thus not llsed below 

W=ro and the experiments were not carried beyond W=ZI. 

It would be interesting to know whether W would continue to 

increase with A or not. 

The flow was periodic and regular up to the point marked 

X on the tangent, and from this point on it was steady and 

uniform. 
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The efficiency of the machine as a pump at the maximum 
discharge A=19; W=20; V=971c.: gives, E=37% • 

At an intermediate point, A=6.0; W=13.5; V=49c.; gives, 
E=62 %. 

At the limit of $teady flow, A=3.1; W=8.2; V=28tc.; 
gives, E=6811l.,%. 

The best results seem to be gotten just at this stage; how­
ever, as a sand-lift velocity of discharge and not pump 
efficiency is to be desired. 

I may in closing give a few other results which were obtained 
with the same pipe 20 cm. out of the water and 30 cm. in the 
water. Thus with the same numbering and notation as in 
table I, these results are tabulated in table II as follows. 

The discharge from I to 9 was steady and uniform. No. 10 
was the limit of steady flow. Nos. I I, I2, 13 and 14 were 

TABLE II. 

20 em. out and 30 em. in the water. 
No. I A I W I Qa I Qw i 

'-~-~--l1-2-I~-:-c-~--'-I-~-~---c:~o--:I-~~~: I ~~-~~ -~ 
3 : 21.1 15.5 1500 I 
4 i I7·5 15·3 875 
5 I 18·3 15·3 550 

6 I 19·4 i 15.2 1300 

7 16.2 14-4 1350 

8 : 14.5 14.2 1375 
9 13·7 13.6 1375 

14.2 i 13.6 I ISO 10 
11* 
12* 
13* 
14* 
15* 
16 

5·5 I 5.2 950 
6.2 i 4.8 1400 

4.7 650 

4.1 700 

0.6 500 
0.0. 200 

1020 

1200 
1350 

1360 
1100 
920 

1090 
740 
8$0 

350 
o 

T-' 

72 
81 
71 
50 
30 

67 
83 
95 

100 
81 

176 
224 
158 
205 

S59 
490 
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per minute. The strokes of No. 15 were not counted being 
very slow. In No. 16 the air delivery was so regulated as to 
j llst keep the pipe full to the top, and therefore 0.4 I c.c.s. rep­
resents the leakage in sustaining a 20c. head in the pipe. 
Throughout the series the flows A and Ware nearly equal, but 
that of W increases less rapidly than A. 

The limit of periodic flow is much higher than in the first 
series. Unfortunately not enough determinations were made 
in the region W=IO, to admit of drawing the graph of mean 
position for A and W, The efficiency as a pump is of course 
inferior to that for lower lifts. 

A few other determinations ,vere made for other lifts, as 
follows: 

J'IIO. I- It I d I QIt I Qw I T I 5 : E 
-~-1-2-5-1:-1-3-5 --+-1-5(;0 1~4:-';':50---+---'---7-li! -~:~~-~-I 

25 35 I 1490 I 1320 333 22 
3 i IS 45 300 I 55 0 I' 0.61 
45 II 30 Ii 30 I 375 i 350 i 20 0·94 

12 48 j 200 5 IO j 0.63 

Nos. 5 and 3 were steady flows, the others were all periodic, 
the number of strokes per minute are recorded under 5, in the 
cases in which they were counted. The time was observed in 
only one case, that of number 2, whose efficiency may be com­
puted. Thus for No.2 we have A=4.2; W=3.96; V=20.4 
and llv=0.ooo5IV2=0.2. whence E=0.60. 

The efficiency of the other cases has been computed, with 
hv neglected, and tabulated under E. NO.4 is remarkable. 

Finally, in closing, it may not be out of place to make a few 
remarks upon the subject of the loss of energy or that due to 
the leakage. While the experiments have not been sufficient 
in number, nor have they covered a wide enough range, to 
prevent any conclusions which may be drawn in regard to this 
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matter being anything but premature, the results have sug­
gested to me the following: 

The loss of energy appears to be made up of two parts, that 
due to the sus taining of a statical head in the pipe above free 
level and an additional loss which is a function of the velocity 
of discharge. 

The first part, which I shall call the potential loss, is de­
pendent on the statical pressure intensity in the column; if 
there be no discharge this is It, if there be discharge this is 
H=It+ It,.. This loss can be determined directly by regulating 
air supplies which will sustain free levels, in a pipe indefinitely 
extended upward, for different values of H, as was done in 
Nos. 32 and 16 of tabl~s I and II respectively. Here the 
losses by leakage are equal to the air supplies. The results 
seem to indicate that this loss of work from leakage rs directly 
proportional to H, the intensity of statical pressure in the 
pipe, or 

I' =c H =c (}z -I-It.,). 

If 1', be the loss equal to the flow of air which will sustain It 
without discharge, then 

" Izv J 1=ll(I+7z.- . 

Neglecting the loss due to frictional resistances in the pipe, 
the loss of kinetic energy or that loss which is a function of 
the velocity, is 

l"=Ad-WH-cH, 

=Ad-H(WTC). 

Referring now to table I, (or better still to a curve of mean 
position) and computing from the data th.ere given,. the quan­
tities V, llv, If and thence l", We find that for the steady flows 
of uniform V, the series of values of r are proportional to those 

of ltv and therefore to V2. 
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The loss r is therefore truly a loss of kinetic energy. 

If we put 1"= k V2 
2% ' 

the original equation of energy becomes, 

wAd=( wW -I-c)lz+ (wW + k)hv + I'. 
In tabJ.e I, we' have 

1'=11' (I + ilvjll) = 12 + k" 

and within the limits of error of the experiment, 

I II T 50 V" = rOO/'tv=-:- • 

% ' 
for uniform tlow, .'. ;':'=0.051. 

For flows which are periodic, the law cannot be expected to 

hold when the values of V are gotten as above, since the dis­

charge takes place in squirts of high velocity, folluwed by 

longer periods of rest. The actual velocity of mean flow must 

therefore be higher than the computed ones, which will bring 

the series for periodic tlow under the law also. 

In order to derive reliable conclusions from such experiments 

a large number of sets should be made upon pipes of different 

diameters, with a larger range of air flows and values of 

d. and h. 

A Iso different arrangements for introducing the air into the 

flow pipe should be employed, it is my opinion that introducing 

it into the side of the pipe, as did Mr. Harris, will do away 

with periodic flow altogether. I distinguish between periodic 

flow caused by accumulations of air in the lower end of the 

pipe, and intermittent flow as caused by the escape of air in 

the' discharge. 

r contemp!Clte, if time be allowed, pushing these experiments 

further, and finally comparing its efficiency with that of the 

water motor described in the beginning of this paper. 



EDITORIAL NOTE. 

It has been decided to discontinue the publication of this 

Journal and- its issue ceases with this number, which closes the 

first volume; 

We .close the first volume and cease the publication with 

considerable regret, yet with no small degree of satisfaction, 

believing as we do, that as a Journal .of Elementary Mathe­

matics it has accomplished fairly well the object which it harl 

in view. 

Had it done nothingm.ore than to put into English words 

the papers of Bolyai and Lobatschewsky its life had been well 

lived. We believe that the time will yet come when the seed 

thus sown will bear its share. of fruit in the advancement of 

sound geometrical teaching in America. 

w. H.E. 
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21. 
,\ horizontal beam span a, resting on two supports at ends, is 

loaded so that the load per running foot varies as the square of 
the distance from one support. Find the tangent to the elastica 
at each end of the beam and the maximum deflection and that 
at the c('nter. [T. U. Ttl)!lor.] 

SOLUTION. 

If u= the pressure at the distance of a unit from a support, 
at the distance z, the ltZ~. The whole load is 

f z "d l ' liZ" z='Sur, . () 

and the center of gravity is 

rZllz~dz . .z 
- • u . 
.;:,' :::':'. --- .. == "1 z. 

f zuz~dz 
• lJ 

from the support. 
Let .\' be the distance of any vertical section of the load from 

the middle of the beam, and y= the deflection. Then E and I 
having the usual meanings, taking moments about the outer 
extremity of .\' 

li2V a 21a3 '.. . 
( r) EIJ ',,= _Jj,(),a-,\·Hlf(,\a-x)3. 

it.\'" 2 24 . . . . 
Integrating once and noticing that when .1'=0, dy/d.\'=o, 

(2) 
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When _'l:=ia, (2) gives 
E1 dyld~·=15hua5. 

Equating the dexter of (2) to zero, 
H ta-:.,·)5-ta4( ta-,,') -t THua5=0, 

gives the maximum deflection. 
Integrating (2) and notich-rg that when -"=ia, y=o, 

(3) E1Y=-g\ua4x2-:ra-uu( ta-.:t,)6-n ?2uua>;"·-r:ls"uua6. 
When x=o, 

lIuas 
Y=-4608EI' 

the required deflection. [W£llz"am Hoozler.] 
23. 

Integrate 
dlu I 

---------.:1. 
dx' dy-( I+X2 + y2) J' 

[G. H. Harvill.] 
SOLUTION. 

Put 1+ Y=b, and then integrate with respect to .'Ii. Then 
dz -" 
-- - -1-. 
dy b(b+.v2) 2 

Put I +x2=a,and integrate with respect to y. Then 

where a- I =c. 
Whence finally 

u=x J0-+ )'2) t+~-i;2)+ 
=x J Z(Z~~-"c)' 

[G. H. RaMll.] 



EXERCISES. 

28. 
The center of an equilateral triangle circumscribed to a 

parabola is the orthocenter of the points of contact. 
[Frank Morley.] 

29. 
A triangle is inscribed in a parabola having its vertex at the 

point of contact of the tangent parallel to its base. In either 
of the segments made by its sides, another triangle is similarly 
inscribed. Show that the former triangle is eight times the 
latter. [U,~ B. Richards.] 

30. 
Two conics which pass each through the focus' of the other 

have a common auxiliary circle. [H. B. Newson.] 

31. 
A parabola touches the double tangent of a fixed cardioid. 

Show that the eight points of intersection of the curves lie on 
two circles; that the circles meet on a fixed circle; and that the 
radical axis of the circles is pa,rallel to the axis of the parabola. 

[FraJtk .Morley.] 

3 9 -. 
Integrate 

[G. H. Hllrrill!. ] 
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33. 

Through a fixed point and the cusp of the cissoid of Diocles, 
three and only three circles can be passed cutting the cissoid 
at right angles; and these three points of intersection are 
collinear. [H. B. Hall.] 

34. 

Let II, h 13 be the escribed centers of a triangle AI, A 2, A~. 

Let the lines joining any point 0 to the vertices meet the 
opposite sides at PI, P2, Pz. Show that lIP!, 12P2, loPn are con-
current. [Frank lIf01oley.] 

Required the volumes 
by another cylinder with 
other an angle H=45'. 

35. 

cut out of a cylinder with radius m, 
radius ll, the axes making with each 

[G. H. Harvill.] 

3f). 

The locus of the middle-points of the intercepts on a pencil 
of lines by two given lines is an hyperbola whose asymptotes 
are parallel to the given lines. [H. B. Newso1Z.] 

37. 

Given two con-nodal tri-nodal quartics, four conics can be 
passed through the three common double points and touching 
each of the quartics and their eight points of contact lie on 
another con-nodal tri-nodal quartic. 

[Annie L. 1I1ackiJZ1:o71.] 
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